University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Chourouk Houbari |
Documents disponibles écrits par cet auteur



Variational Study of a class of quasistatic electro -viscoelastic problem with inelateral contact without friction / Chourouk Houbari
Titre : Variational Study of a class of quasistatic electro -viscoelastic problem with inelateral contact without friction Type de document : texte imprimé Auteurs : Chourouk Houbari, Auteur ; Nadhir Chougui, Directeur de thèse Editeur : Sétif:UFS Année de publication : 2024 Importance : 1 vol (53 f.) Format : 29 cm Langues : Anglais (eng) Catégories : Thèses & Mémoires:Mathématique Mots-clés : Elecro-viscoelastic materials
Frictionless contact
Ignoring conditions
Maximal monotone operators
weak solutionIndex. décimale : 510-Mathématique Résumé :
This study considered a mathematical model to describe the process of a quasi-static contact between a piezoelectric body and an electrically conductive foundation. The behavior of the material was modeled with a nonlinear electro-viscoelastic constitutive law, the contact was frictionless, and the result was described with the Signorini condition. A variational formulation was derived for the problem, proving the existence and uniqueness of a weak solution of the model. The proof was based on arguments for nonlinear equations with maximal monotone operators.Note de contenu : Sommaire
Introduction1
1 ModelingandmathematicalTools4
1.1Physicalframwork-Mathemaicalmodel................. 4
1.1.1Physicalframwork........................ 4
1.1.2Mathematicalmodel....................... 8
1.1.3TheLawsofbehavoir....................... 10
1.1.4ContactBoundarycondition................... 12
1.1.5Contactwithorwithoutfriction................. 15
1.2Recalleofsomemathematicalconceptes................ 17
1.2.1Functionalspace......................... 17
1.2.2SpacesRelatedtodeformationanddivergenceoperators... 20
1.2.3ElementsofNonlinearAnalysisinHilbertspaces....... 25
1.2.4Di¤erentialinclusions....................... 29
1.2.5Statementofcertaintheorems.................. 30
2 Aquasistaticelectro-viscoelasticproblemwithunilateralcontact
withoutfriction33
2.1problemstatement............................ 33
2.2Variationalformulation.......................... 40
2.3Existenceanduniquenssresult...................... 42Côte titre : MAM/0706 Variational Study of a class of quasistatic electro -viscoelastic problem with inelateral contact without friction [texte imprimé] / Chourouk Houbari, Auteur ; Nadhir Chougui, Directeur de thèse . - [S.l.] : Sétif:UFS, 2024 . - 1 vol (53 f.) ; 29 cm.
Langues : Anglais (eng)
Catégories : Thèses & Mémoires:Mathématique Mots-clés : Elecro-viscoelastic materials
Frictionless contact
Ignoring conditions
Maximal monotone operators
weak solutionIndex. décimale : 510-Mathématique Résumé :
This study considered a mathematical model to describe the process of a quasi-static contact between a piezoelectric body and an electrically conductive foundation. The behavior of the material was modeled with a nonlinear electro-viscoelastic constitutive law, the contact was frictionless, and the result was described with the Signorini condition. A variational formulation was derived for the problem, proving the existence and uniqueness of a weak solution of the model. The proof was based on arguments for nonlinear equations with maximal monotone operators.Note de contenu : Sommaire
Introduction1
1 ModelingandmathematicalTools4
1.1Physicalframwork-Mathemaicalmodel................. 4
1.1.1Physicalframwork........................ 4
1.1.2Mathematicalmodel....................... 8
1.1.3TheLawsofbehavoir....................... 10
1.1.4ContactBoundarycondition................... 12
1.1.5Contactwithorwithoutfriction................. 15
1.2Recalleofsomemathematicalconceptes................ 17
1.2.1Functionalspace......................... 17
1.2.2SpacesRelatedtodeformationanddivergenceoperators... 20
1.2.3ElementsofNonlinearAnalysisinHilbertspaces....... 25
1.2.4Di¤erentialinclusions....................... 29
1.2.5Statementofcertaintheorems.................. 30
2 Aquasistaticelectro-viscoelasticproblemwithunilateralcontact
withoutfriction33
2.1problemstatement............................ 33
2.2Variationalformulation.......................... 40
2.3Existenceanduniquenssresult...................... 42Côte titre : MAM/0706 Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Variational Study of a class of quasistatic electro -viscoelastic problem with inelateral contact without friction / Chourouk Houbari
Titre : Variational Study of a class of quasistatic electro -viscoelastic problem with inelateral contact without friction Type de document : texte imprimé Auteurs : Chourouk Houbari, Auteur ; Nadhir Chougui, Directeur de thèse Editeur : Sétif:UFS Année de publication : 2024 Importance : 1 vol (53 f.) Format : 29 cm Langues : Anglais (eng) Catégories : Thèses & Mémoires:Mathématique Mots-clés : Elecro-viscoelastic materials
Frictionless contact
Ignoring conditions
Maximal monotone operators
weak solutionIndex. décimale : 510-Mathématique Résumé :
This study considered a mathematical model to describe the process of a quasi-static contact between a piezoelectric body and an electrically conductive foundation. The behavior of the material was modeled with a nonlinear electro-viscoelastic constitutive law, the contact was frictionless, and the result was described with the Signorini condition. A variational formulation was derived for the problem, proving the existence and uniqueness of a weak solution of the model. The proof was based on arguments for nonlinear equations with maximal monotone operators.Note de contenu : Sommaire
Introduction1
1 ModelingandmathematicalTools4
1.1Physicalframwork-Mathemaicalmodel................. 4
1.1.1Physicalframwork........................ 4
1.1.2Mathematicalmodel....................... 8
1.1.3TheLawsofbehavoir....................... 10
1.1.4ContactBoundarycondition................... 12
1.1.5Contactwithorwithoutfriction................. 15
1.2Recalleofsomemathematicalconceptes................ 17
1.2.1Functionalspace......................... 17
1.2.2SpacesRelatedtodeformationanddivergenceoperators... 20
1.2.3ElementsofNonlinearAnalysisinHilbertspaces....... 25
1.2.4Di¤erentialinclusions....................... 29
1.2.5Statementofcertaintheorems.................. 30
2 Aquasistaticelectro-viscoelasticproblemwithunilateralcontact
withoutfriction33
2.1problemstatement............................ 33
2.2Variationalformulation.......................... 40
2.3Existenceanduniquenssresult...................... 42Côte titre : MAM/0706 Variational Study of a class of quasistatic electro -viscoelastic problem with inelateral contact without friction [texte imprimé] / Chourouk Houbari, Auteur ; Nadhir Chougui, Directeur de thèse . - [S.l.] : Sétif:UFS, 2024 . - 1 vol (53 f.) ; 29 cm.
Langues : Anglais (eng)
Catégories : Thèses & Mémoires:Mathématique Mots-clés : Elecro-viscoelastic materials
Frictionless contact
Ignoring conditions
Maximal monotone operators
weak solutionIndex. décimale : 510-Mathématique Résumé :
This study considered a mathematical model to describe the process of a quasi-static contact between a piezoelectric body and an electrically conductive foundation. The behavior of the material was modeled with a nonlinear electro-viscoelastic constitutive law, the contact was frictionless, and the result was described with the Signorini condition. A variational formulation was derived for the problem, proving the existence and uniqueness of a weak solution of the model. The proof was based on arguments for nonlinear equations with maximal monotone operators.Note de contenu : Sommaire
Introduction1
1 ModelingandmathematicalTools4
1.1Physicalframwork-Mathemaicalmodel................. 4
1.1.1Physicalframwork........................ 4
1.1.2Mathematicalmodel....................... 8
1.1.3TheLawsofbehavoir....................... 10
1.1.4ContactBoundarycondition................... 12
1.1.5Contactwithorwithoutfriction................. 15
1.2Recalleofsomemathematicalconceptes................ 17
1.2.1Functionalspace......................... 17
1.2.2SpacesRelatedtodeformationanddivergenceoperators... 20
1.2.3ElementsofNonlinearAnalysisinHilbertspaces....... 25
1.2.4Di¤erentialinclusions....................... 29
1.2.5Statementofcertaintheorems.................. 30
2 Aquasistaticelectro-viscoelasticproblemwithunilateralcontact
withoutfriction33
2.1problemstatement............................ 33
2.2Variationalformulation.......................... 40
2.3Existenceanduniquenssresult...................... 42Côte titre : MAM/0706 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAM/0706 MAM/0706 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible