University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Amira Djemili |
Documents disponibles écrits par cet auteur



Titre : The harmonic oscillator in affine quantization Type de document : document électronique Auteurs : Amira Djemili, Auteur ; Yacine Bouguerra, Directeur de thèse Editeur : Setif:UFA Année de publication : 2024 Importance : 1 vol (38 f.) Format : 29 cm Langues : Anglais (eng) Catégories : Thèses & Mémoires:Physique Mots-clés : Physique Index. décimale : 530 - Physique Résumé :
In this work, we have highlighted the Affine Quantization procedure introduced by J. R.
Klauder to better understand this quantification method on non-trivial phase spaces where
canonical quantization fails. Such problems may include situations where a non-linear, nontrivial
classical model becomes trivial during quantification. Canonical quantization is only
successful when applied with coordinates referring to a system of Cartesian axes and not more
general curvilinear coordinates. Cartesian coordinates can only exist in flat space. Affine
quantization does not claim to replace canonical quantization, but on the contrary, it actually
extends similar canonical quantization procedures to solve problems that canonical
quantization cannot solve. We explained this quantification procedure for the simple case of a
harmonic oscillator on the half-line and verified the Heisenberg uncertainty for the ground
state and the first excited state.Note de contenu : Sommaire
Côte titre : MAPH/0645 The harmonic oscillator in affine quantization [document électronique] / Amira Djemili, Auteur ; Yacine Bouguerra, Directeur de thèse . - [S.l.] : Setif:UFA, 2024 . - 1 vol (38 f.) ; 29 cm.
Langues : Anglais (eng)
Catégories : Thèses & Mémoires:Physique Mots-clés : Physique Index. décimale : 530 - Physique Résumé :
In this work, we have highlighted the Affine Quantization procedure introduced by J. R.
Klauder to better understand this quantification method on non-trivial phase spaces where
canonical quantization fails. Such problems may include situations where a non-linear, nontrivial
classical model becomes trivial during quantification. Canonical quantization is only
successful when applied with coordinates referring to a system of Cartesian axes and not more
general curvilinear coordinates. Cartesian coordinates can only exist in flat space. Affine
quantization does not claim to replace canonical quantization, but on the contrary, it actually
extends similar canonical quantization procedures to solve problems that canonical
quantization cannot solve. We explained this quantification procedure for the simple case of a
harmonic oscillator on the half-line and verified the Heisenberg uncertainty for the ground
state and the first excited state.Note de contenu : Sommaire
Côte titre : MAPH/0645 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAPH/0645 MAPH/0645 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible