University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Rayan Chaib |
Documents disponibles écrits par cet auteur



Titre : Neutron Transmutation Doping of Silicon and Germanium in the THOR Research Reactor Type de document : document électronique Auteurs : Rayan Chaib, Auteur ; Zahia Allal, Auteur ; Mounira Houas, Directeur de thèse Editeur : Setif:UFA Année de publication : 2024 Importance : 1 vol (65 f.) Format : 29 cm Langues : Anglais (eng) Catégories : Thèses & Mémoires:Physique Mots-clés : Physique Index. décimale : 530 - Physique Résumé :
Neutron transmutation doping of semiconductors is one of the most viable nuclear applications for research reactors. This technique is based on the capture of thermal neutrons by certain isotopes of the material which will be transmuted into dopants in order to reduce its resistivity. The most important advantage of this process is the good uniform distribution of dopants in the semiconductor lattice which results an excellent homogeneity in resistivity.
In our work, we studied the neutron transmutation doping of Silicon and Germanium in the core of the THOR research reactor using the ChainSolver calculation code. In this simulation, we irradiated Si and Ge samples at different neutron fluxes. Finally, the results of the effect of thermal neutron flux on the electrical resistivity of all samples are discussed.Note de contenu : Sommaire
CHAPTER I
Semiconductors : Silicon and Germanium
I.1. Definition of semiconductors :
03
I.2. Silicon semiconductor :
03
I.2.1. Silicon atom :
04
I.2.2. Silicon crystal structure :
05
I.2.3. Properties of Silicon :
05
I.3. Germanium semiconductor :
08
I.3.1. Germanium atom :
09
I.3.2. Germanium crystal structure :
10
I.3.3. Properties of Germanium :
10
I.3.4. Uses of Germanium :
11
I.4. Electrical characteristics of semiconductors :
12
I.4.1. Energy Bands :
12
I.4.2. Energy gap :
13
I.4.3. Electrical conductivity :
14
I.4.4. Electrical resistivity :
15
CHAPTER II
Neutron transmutation doping of semiconductor
II.1. Semiconductor doping :
17
II.1.1. Meaning of doping in semiconductors
17
II.1.2. Types of doping :
17
II.1.3. Energy Levels of donor and acceptor atoms
20
II.2. Applications of doped semiconductors :
21
II.3. Semiconductor doping techniques :
22
II.3.1. Doping by ion implantation :
22
II.3.2. Thermal Diffusion Doping :
22
II.3.3. Doping by laser technique :
23
II.3.4. Epitaxial doping :
23
II.3.5. Neutron transmutation doping :
23
II.4. Doping of Silicon and Germanium by neutron transmutation :
24
II.4.1. Introduction to semiconductor-NTD :
24
II.4.2. Doping of Silicon by neutron transmutation :
24
II.4.3. Doping of Germanium by neutron transmutation :
27
II.5. The advantages and the disadvantages of neutron transmutation doping :
29
CHAPTER III
Study of Silicon and Germanium doping by neutron transmutation in the THOR reactor
III.1. Presentation of the THOR research reactor :
31
III.2. Presentation of the ChainSolver code :
33
III.3. The JANIS nuclear data presentation code :
36
III.4. Simulation of Silicon doping :
37
III.4.1. The Silicon transmutation chain :
37
III.4.2.The initial characteristics of the Silicon samples :
38
III.4.3. Irradiation conditions for Silicon :
39
III.5. Simulation of Germanium doping :
39
III.5.1. The Germanium transmutation chain :
39
III.5.2. The initial characteristics of the Germanium samples :
41
III.5.3. Irradiation conditions for Germanium :
41
CHAPTER IV
Analysis of results and discussion
IV.1. Silicon doping results :
42
IV.1.1. Presentation of the results :
42
IV.1.2. Determination of the final resistivities of the doped Silicon :
44
IV.1.3. The relationship between irradiation time and resistivity :
48
IV.2. Germanium doping results :
50
IV.2.1. Presentation of the results :
50
IV.2.2. Concentrations of dopants created in doped Ge :
54
IV.2.3. The resistivities of doped Germanium :
56
IV.2.4. The K compensation report :
57
IV.3. The final resistivity of doped Silicon and Germanium after isolation :
58
IV.4. Results and discussion :\
58
CONCLUSION
Côte titre : MAPH/0651 Neutron Transmutation Doping of Silicon and Germanium in the THOR Research Reactor [document électronique] / Rayan Chaib, Auteur ; Zahia Allal, Auteur ; Mounira Houas, Directeur de thèse . - [S.l.] : Setif:UFA, 2024 . - 1 vol (65 f.) ; 29 cm.
Langues : Anglais (eng)
Catégories : Thèses & Mémoires:Physique Mots-clés : Physique Index. décimale : 530 - Physique Résumé :
Neutron transmutation doping of semiconductors is one of the most viable nuclear applications for research reactors. This technique is based on the capture of thermal neutrons by certain isotopes of the material which will be transmuted into dopants in order to reduce its resistivity. The most important advantage of this process is the good uniform distribution of dopants in the semiconductor lattice which results an excellent homogeneity in resistivity.
In our work, we studied the neutron transmutation doping of Silicon and Germanium in the core of the THOR research reactor using the ChainSolver calculation code. In this simulation, we irradiated Si and Ge samples at different neutron fluxes. Finally, the results of the effect of thermal neutron flux on the electrical resistivity of all samples are discussed.Note de contenu : Sommaire
CHAPTER I
Semiconductors : Silicon and Germanium
I.1. Definition of semiconductors :
03
I.2. Silicon semiconductor :
03
I.2.1. Silicon atom :
04
I.2.2. Silicon crystal structure :
05
I.2.3. Properties of Silicon :
05
I.3. Germanium semiconductor :
08
I.3.1. Germanium atom :
09
I.3.2. Germanium crystal structure :
10
I.3.3. Properties of Germanium :
10
I.3.4. Uses of Germanium :
11
I.4. Electrical characteristics of semiconductors :
12
I.4.1. Energy Bands :
12
I.4.2. Energy gap :
13
I.4.3. Electrical conductivity :
14
I.4.4. Electrical resistivity :
15
CHAPTER II
Neutron transmutation doping of semiconductor
II.1. Semiconductor doping :
17
II.1.1. Meaning of doping in semiconductors
17
II.1.2. Types of doping :
17
II.1.3. Energy Levels of donor and acceptor atoms
20
II.2. Applications of doped semiconductors :
21
II.3. Semiconductor doping techniques :
22
II.3.1. Doping by ion implantation :
22
II.3.2. Thermal Diffusion Doping :
22
II.3.3. Doping by laser technique :
23
II.3.4. Epitaxial doping :
23
II.3.5. Neutron transmutation doping :
23
II.4. Doping of Silicon and Germanium by neutron transmutation :
24
II.4.1. Introduction to semiconductor-NTD :
24
II.4.2. Doping of Silicon by neutron transmutation :
24
II.4.3. Doping of Germanium by neutron transmutation :
27
II.5. The advantages and the disadvantages of neutron transmutation doping :
29
CHAPTER III
Study of Silicon and Germanium doping by neutron transmutation in the THOR reactor
III.1. Presentation of the THOR research reactor :
31
III.2. Presentation of the ChainSolver code :
33
III.3. The JANIS nuclear data presentation code :
36
III.4. Simulation of Silicon doping :
37
III.4.1. The Silicon transmutation chain :
37
III.4.2.The initial characteristics of the Silicon samples :
38
III.4.3. Irradiation conditions for Silicon :
39
III.5. Simulation of Germanium doping :
39
III.5.1. The Germanium transmutation chain :
39
III.5.2. The initial characteristics of the Germanium samples :
41
III.5.3. Irradiation conditions for Germanium :
41
CHAPTER IV
Analysis of results and discussion
IV.1. Silicon doping results :
42
IV.1.1. Presentation of the results :
42
IV.1.2. Determination of the final resistivities of the doped Silicon :
44
IV.1.3. The relationship between irradiation time and resistivity :
48
IV.2. Germanium doping results :
50
IV.2.1. Presentation of the results :
50
IV.2.2. Concentrations of dopants created in doped Ge :
54
IV.2.3. The resistivities of doped Germanium :
56
IV.2.4. The K compensation report :
57
IV.3. The final resistivity of doped Silicon and Germanium after isolation :
58
IV.4. Results and discussion :\
58
CONCLUSION
Côte titre : MAPH/0651 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MAPH/0651 MAPH/0651 Mémoire Bibliothéque des sciences Anglais Disponible
Disponible