University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Lina Chetioui |
Documents disponibles écrits par cet auteur



Analytical and Numerical Treatment of Nonlinear Fractional Differential Equations Involving Caputo Fractional Operator / Lina Chetioui
Titre : Analytical and Numerical Treatment of Nonlinear Fractional Differential Equations Involving Caputo Fractional Operator Type de document : document électronique Auteurs : Lina Chetioui, Auteur ; Khalouta,Ali, Directeur de thèse Editeur : Setif:UFA Année de publication : 2025 Importance : 1 vol (98 f.) Format : 29 cm Langues : Anglais (eng) Catégories : Thèses & Mémoires:Mathématique Mots-clés : Fractional differential equations
Caputo fractional derivative
Approximate solution
Analytical solutionIndex. décimale : 510 - Mathématique Résumé :
Nonlinear fractional differential equations play an important role in applied mathematics and physics. It is difficult to obtain the exact solution for these problems due to the complexity of the nonlinear terms included. In recent decades, there has been great development in the numerical analysis and exact solution for nonlinear fractional differential equations. The main objective of this thesis is to study the solutions of nonlinear fractional differential equations involving Caputo fractional operator by proposing new technique. To demonstrate the validity and reliability of this technique, it is applied to several numerical examples.Note de contenu : Sommaire
Introductionii
1 Basicconceptsoffractionalcalculus1
1.1Applicationsoffractionalsystems........................ 1
1.1.1Automatic................................. 1
1.1.2Physics................................... 2
1.1.3Mechanicsofcontinuousmedia..................... 2
1.1.4Acoustic.................................. 3
1.2Functionalspaces................................. 3
1.2.1Spacesofintegrablefunctions...................... 3
1.2.2Spacesofcontinuousandabsolutelycontinuousfunctions....... 4
1.2.3Spacesofcontinuousfunctionswithweight............... 5
1.2.4BanachÂ…xedpointtheorem....................... 5
1.3SpeciÂ…cfunctionsforfractionalderivation................... 6
1.3.1Gammafunction............................. 6
1.3.2Betafunction............................... 7
1.3.3Mittag-LeÂerfunction.......................... 7
1.4Fractionalintegralsandderivatives....................... 8
1.4.1FractionalintegralintheRiemann-Liouvillesense........... 8
1.4.2FractionalderivativeintheRiemann-Liouvillesense......... 12
1.4.3SomepropertiesoffractionalderivationinthesenseofRiemann-
Liouville.................................. 15
1.4.4FractionalderivativeinthesenseofCaputo.............. 17
1.4.5SomepropertiesoffractionalderivationinthesenseofCaputo.... 22
1.4.6RelationbetweentheRiemann-LiouvilleapproachandthatofCaputo 23
2 Fractionaldi¤erentialequationsinthesenseofCaputo25
2.1EquivalenceresultbetweentheCauchyproblemandtheVolterraintegral
equation...................................... 25
2.2Resultofexistenceanduniquenessofthesolution............... 27
3 Semi-analyticalmethodsandtheirconvergence33
3.1Adomiandecompositionmethod(ADM).................... 33
3.1.1Descriptionofthemethod........................ 33
3.1.2Adomianpolynomials........................... 35
3.1.3ConvergenceoftheADM......................... 36
3.2Homotopyperturbationmethod(HPM)..................... 39
3.2.1Descriptionofthemethod........................ 40
3.2.2Convergenceanalysis........................... 41
3.3Variationaliterationmethod(VIM)....................... 48
3.3.1Descriptionofthemethod........................ 49
3.3.2AlternativeapproachtoVIM...................... 49
3.3.3Convergenceanalysis........................... 51
3.4Newiterativemethod(NIM)........................... 56
3.4.1Descriptionofthemethod........................ 56
3.4.2ConvergenceofNIM........................... 57
4 Onthesolutionofnonlinearfractionaldi¤erentialequations61
4.1ApplicationoftheADM............................. 61
4.2ApplicationoftheHPM............................. 65
4.3ApplicationoftheVIM.............................. 69
4.4ApplicationoftheNIM.............................. 72
5 NewcombinationmethodforsolvingnonlinearfractionalLienardequa-
tion 77
5.1Lienardequation................................. 77
5.2Khaloutatransform................................ 78
5.3Di¤erentialtransformmethod.......................... 82
5.4DescriptionoftheKHDTM........................... 84
5.5ConvergenceoftheKHDTM........................... 85
5.6Illustrativeexamples............................... 87
Conclusionandresearchperspectives92
Bibliography92Côte titre : DM/0205 Analytical and Numerical Treatment of Nonlinear Fractional Differential Equations Involving Caputo Fractional Operator [document électronique] / Lina Chetioui, Auteur ; Khalouta,Ali, Directeur de thèse . - [S.l.] : Setif:UFA, 2025 . - 1 vol (98 f.) ; 29 cm.
Langues : Anglais (eng)
Catégories : Thèses & Mémoires:Mathématique Mots-clés : Fractional differential equations
Caputo fractional derivative
Approximate solution
Analytical solutionIndex. décimale : 510 - Mathématique Résumé :
Nonlinear fractional differential equations play an important role in applied mathematics and physics. It is difficult to obtain the exact solution for these problems due to the complexity of the nonlinear terms included. In recent decades, there has been great development in the numerical analysis and exact solution for nonlinear fractional differential equations. The main objective of this thesis is to study the solutions of nonlinear fractional differential equations involving Caputo fractional operator by proposing new technique. To demonstrate the validity and reliability of this technique, it is applied to several numerical examples.Note de contenu : Sommaire
Introductionii
1 Basicconceptsoffractionalcalculus1
1.1Applicationsoffractionalsystems........................ 1
1.1.1Automatic................................. 1
1.1.2Physics................................... 2
1.1.3Mechanicsofcontinuousmedia..................... 2
1.1.4Acoustic.................................. 3
1.2Functionalspaces................................. 3
1.2.1Spacesofintegrablefunctions...................... 3
1.2.2Spacesofcontinuousandabsolutelycontinuousfunctions....... 4
1.2.3Spacesofcontinuousfunctionswithweight............... 5
1.2.4BanachÂ…xedpointtheorem....................... 5
1.3SpeciÂ…cfunctionsforfractionalderivation................... 6
1.3.1Gammafunction............................. 6
1.3.2Betafunction............................... 7
1.3.3Mittag-LeÂerfunction.......................... 7
1.4Fractionalintegralsandderivatives....................... 8
1.4.1FractionalintegralintheRiemann-Liouvillesense........... 8
1.4.2FractionalderivativeintheRiemann-Liouvillesense......... 12
1.4.3SomepropertiesoffractionalderivationinthesenseofRiemann-
Liouville.................................. 15
1.4.4FractionalderivativeinthesenseofCaputo.............. 17
1.4.5SomepropertiesoffractionalderivationinthesenseofCaputo.... 22
1.4.6RelationbetweentheRiemann-LiouvilleapproachandthatofCaputo 23
2 Fractionaldi¤erentialequationsinthesenseofCaputo25
2.1EquivalenceresultbetweentheCauchyproblemandtheVolterraintegral
equation...................................... 25
2.2Resultofexistenceanduniquenessofthesolution............... 27
3 Semi-analyticalmethodsandtheirconvergence33
3.1Adomiandecompositionmethod(ADM).................... 33
3.1.1Descriptionofthemethod........................ 33
3.1.2Adomianpolynomials........................... 35
3.1.3ConvergenceoftheADM......................... 36
3.2Homotopyperturbationmethod(HPM)..................... 39
3.2.1Descriptionofthemethod........................ 40
3.2.2Convergenceanalysis........................... 41
3.3Variationaliterationmethod(VIM)....................... 48
3.3.1Descriptionofthemethod........................ 49
3.3.2AlternativeapproachtoVIM...................... 49
3.3.3Convergenceanalysis........................... 51
3.4Newiterativemethod(NIM)........................... 56
3.4.1Descriptionofthemethod........................ 56
3.4.2ConvergenceofNIM........................... 57
4 Onthesolutionofnonlinearfractionaldi¤erentialequations61
4.1ApplicationoftheADM............................. 61
4.2ApplicationoftheHPM............................. 65
4.3ApplicationoftheVIM.............................. 69
4.4ApplicationoftheNIM.............................. 72
5 NewcombinationmethodforsolvingnonlinearfractionalLienardequa-
tion 77
5.1Lienardequation................................. 77
5.2Khaloutatransform................................ 78
5.3Di¤erentialtransformmethod.......................... 82
5.4DescriptionoftheKHDTM........................... 84
5.5ConvergenceoftheKHDTM........................... 85
5.6Illustrativeexamples............................... 87
Conclusionandresearchperspectives92
Bibliography92Côte titre : DM/0205 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité DM/0205 DM/0205 Thèse Bibliothéque des sciences Anglais Disponible
Disponible