|
| Titre : |
Machine Learning and Deep Learning for Autism Spectrum Disorder (ASD) detection |
| Type de document : |
document électronique |
| Auteurs : |
Nour elhouda Mahdaoui ; kaouther Belkefoul, Auteur ; Semcheddine,Moussa, Directeur de thèse |
| Editeur : |
Setif:UFA |
| Année de publication : |
2025 |
| Importance : |
1 vol (75 f .) |
| Format : |
29 cm |
| Langues : |
Anglais (eng) |
| Catégories : |
Thèses & Mémoires:Informatique
|
| Mots-clés : |
Autism Spectrum Disorder
Early detection
Deep learning
Facial images
Movement |
| Index. décimale : |
004 Informatique |
| Résumé : |
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by difficulties
with social interaction, communication, and behavior. Early identification ensures timely
intervention and improves quality of life. The present study proposes a two-modality binary
classification approach for ASD detection based on facial image data and movement data. The
image dataset consists of facial photos of children labeled as ASD or non-ASD. The movement
data, captured using a Kinect v2 sensor, comprises 1,259 features per subject derived from 3D
joint positions and gait metrics, with a total of 800 samples.
A DenseNet121 convolutional neural network (CNN) was employed for images, achieving 89%
accuracy. Grad-CAM was used to provide visual explanations by highlighting important regions
in the images. For the movement modality, a Multi-Layer Perceptron (MLP) trained on
features learned via an autoencoder achieved 99.38% accuracy, with Shapley Additive exPlanations
(SHAP) applied to identify key features influencing model decisions. Finally, a late
fusion mechanism combining both models was evaluated, resulting in 88.12% accuracy. Results
highlight the effectiveness of unimodal solutions, particularly the MLP with autoencoder, and
indicate that multimodal fusion requires further optimization for enhanced overall performance |
| Note de contenu : |
Sommaire
List of Figures iv
List of Tables v
List of abbreviations vi
General Introduction 1
Chapter 1 : Autism spectrum disorder (ASD) 3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1 Definition and overview . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Historical perspective on autism . . . . . . . . . . . . . . . . . 5
2 Prevalence and epidemiology of ASD . . . . . . . . . . . . . . . . . 6
3 Causes and risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Genetic factors . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Environmental risk factors . . . . . . . . . . . . . . . . . . . . 7
3.3 Parental age and premature birth . . . . . . . . . . . . . . . . . 7
4 Signs and symptoms of autism spectrum disorder (ASD) . . . . . . . 8
5 Diagnosis of autism spectrum disorder . . . . . . . . . . . . . . . . . 9
6 Importance of early diagnosis . . . . . . . . . . . . . . . . . . . . . 11
7 Comorbidities of autism spectrum disorder (ASD) . . . . . . . . . . . 11
7.1 Common comorbidities . . . . . . . . . . . . . . . . . . . . . 11
7.2 Psychiatric conditions . . . . . . . . . . . . . . . . . . . . . . 12
8 Interventions and treatments for ASD . . . . . . . . . . . . . . . . . 12
9 The role of technology in autism spectrum disorder . . . . . . . . . . 13
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Chapter 2 : Background and Literature Review 15
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1 Machine learning (ML) . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1 Definition and basic concepts of ML . . . . . . . . . . . . . . 16
1.2 Types of machine learning . . . . . . . . . . . . . . . . . . . . 17
2 Deep learning (DL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Definition and basic concepts of DL . . . . . . . . . . . . . . . 19
2.2 Evolution of deep learning models . . . . . . . . . . . . . . . 20
2.3 Types of artificial neural networks . . . . . . . . . . . . . . . . 21
2.4 Evaluation metrics for deep learning and machine learning models 25
2.5 Deep learning vs. traditional machine learning . . . . . . . . . 26
3 ML and DL for ASD detection . . . . . . . . . . . . . . . . . . . . . 26
3.1 Advantages of ML/DL over traditional methods . . . . . . . . 27
3.2 Analyzing complex patterns in large datasets . . . . . . . . . . 27
4 Machine learning techniques for ASD detection . . . . . . . . . . . . 27
4.1 Neuroimaging-based approaches . . . . . . . . . . . . . . . . 28
4.2 Behavioral data and feature-based models . . . . . . . . . . . . 30
4.3 Hybrid and ensemble learning approaches . . . . . . . . . . . 31
5 Deep learning techniques for ASD detection . . . . . . . . . . . . . . 32
5.1 Convolutional neural networks for ASD classification . . . . . 33
5.2 Transfer learning for ASD detection using facial features . . . . 34
5.3 Hybrid and multi-modal learning approaches . . . . . . . . . . 36
6 Data sources for machine learning and deep learning in autism spectrum
disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7 Challenges and limitations in ML/DL for ASD detection . . . . . . . 37
7.1 Unavailable MRI neuroimaging datasets of ASD patients . . . 38
7.2 Challenges in artificial intelligence algorithms in diagnosing
autism spectrum disorder . . . . . . . . . . . . . . . . . . . . 38
7.3 Challenges in hardware . . . . . . . . . . . . . . . . . . . . . 38
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Chapter3 : Contribution,experiments and results 40
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1 Development environment . . . . . . . . . . . . . . . . . . . . . . . 41
1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2 Proposed methodology . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1 Phase 1: Motion data analysis . . . . . . . . . . . . . . . . . . 43
2.2 Phase 2: Analysis of image data using deep learning . . . . . . 47
2.3 Phase 3: Multimodal learning via late fusion . . . . . . . . . . 51
3 Validation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Model Architectures . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 57
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Conclusion and future work 60
Bibliographie 75 |
| Côte titre : |
MAI/0965 |
Machine Learning and Deep Learning for Autism Spectrum Disorder (ASD) detection [document électronique] / Nour elhouda Mahdaoui ; kaouther Belkefoul, Auteur ; Semcheddine,Moussa, Directeur de thèse . - [S.l.] : Setif:UFA, 2025 . - 1 vol (75 f .) ; 29 cm. Langues : Anglais ( eng)
| Catégories : |
Thèses & Mémoires:Informatique
|
| Mots-clés : |
Autism Spectrum Disorder
Early detection
Deep learning
Facial images
Movement |
| Index. décimale : |
004 Informatique |
| Résumé : |
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by difficulties
with social interaction, communication, and behavior. Early identification ensures timely
intervention and improves quality of life. The present study proposes a two-modality binary
classification approach for ASD detection based on facial image data and movement data. The
image dataset consists of facial photos of children labeled as ASD or non-ASD. The movement
data, captured using a Kinect v2 sensor, comprises 1,259 features per subject derived from 3D
joint positions and gait metrics, with a total of 800 samples.
A DenseNet121 convolutional neural network (CNN) was employed for images, achieving 89%
accuracy. Grad-CAM was used to provide visual explanations by highlighting important regions
in the images. For the movement modality, a Multi-Layer Perceptron (MLP) trained on
features learned via an autoencoder achieved 99.38% accuracy, with Shapley Additive exPlanations
(SHAP) applied to identify key features influencing model decisions. Finally, a late
fusion mechanism combining both models was evaluated, resulting in 88.12% accuracy. Results
highlight the effectiveness of unimodal solutions, particularly the MLP with autoencoder, and
indicate that multimodal fusion requires further optimization for enhanced overall performance |
| Note de contenu : |
Sommaire
List of Figures iv
List of Tables v
List of abbreviations vi
General Introduction 1
Chapter 1 : Autism spectrum disorder (ASD) 3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1 Definition and overview . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Historical perspective on autism . . . . . . . . . . . . . . . . . 5
2 Prevalence and epidemiology of ASD . . . . . . . . . . . . . . . . . 6
3 Causes and risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Genetic factors . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Environmental risk factors . . . . . . . . . . . . . . . . . . . . 7
3.3 Parental age and premature birth . . . . . . . . . . . . . . . . . 7
4 Signs and symptoms of autism spectrum disorder (ASD) . . . . . . . 8
5 Diagnosis of autism spectrum disorder . . . . . . . . . . . . . . . . . 9
6 Importance of early diagnosis . . . . . . . . . . . . . . . . . . . . . 11
7 Comorbidities of autism spectrum disorder (ASD) . . . . . . . . . . . 11
7.1 Common comorbidities . . . . . . . . . . . . . . . . . . . . . 11
7.2 Psychiatric conditions . . . . . . . . . . . . . . . . . . . . . . 12
8 Interventions and treatments for ASD . . . . . . . . . . . . . . . . . 12
9 The role of technology in autism spectrum disorder . . . . . . . . . . 13
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Chapter 2 : Background and Literature Review 15
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1 Machine learning (ML) . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1 Definition and basic concepts of ML . . . . . . . . . . . . . . 16
1.2 Types of machine learning . . . . . . . . . . . . . . . . . . . . 17
2 Deep learning (DL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Definition and basic concepts of DL . . . . . . . . . . . . . . . 19
2.2 Evolution of deep learning models . . . . . . . . . . . . . . . 20
2.3 Types of artificial neural networks . . . . . . . . . . . . . . . . 21
2.4 Evaluation metrics for deep learning and machine learning models 25
2.5 Deep learning vs. traditional machine learning . . . . . . . . . 26
3 ML and DL for ASD detection . . . . . . . . . . . . . . . . . . . . . 26
3.1 Advantages of ML/DL over traditional methods . . . . . . . . 27
3.2 Analyzing complex patterns in large datasets . . . . . . . . . . 27
4 Machine learning techniques for ASD detection . . . . . . . . . . . . 27
4.1 Neuroimaging-based approaches . . . . . . . . . . . . . . . . 28
4.2 Behavioral data and feature-based models . . . . . . . . . . . . 30
4.3 Hybrid and ensemble learning approaches . . . . . . . . . . . 31
5 Deep learning techniques for ASD detection . . . . . . . . . . . . . . 32
5.1 Convolutional neural networks for ASD classification . . . . . 33
5.2 Transfer learning for ASD detection using facial features . . . . 34
5.3 Hybrid and multi-modal learning approaches . . . . . . . . . . 36
6 Data sources for machine learning and deep learning in autism spectrum
disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7 Challenges and limitations in ML/DL for ASD detection . . . . . . . 37
7.1 Unavailable MRI neuroimaging datasets of ASD patients . . . 38
7.2 Challenges in artificial intelligence algorithms in diagnosing
autism spectrum disorder . . . . . . . . . . . . . . . . . . . . 38
7.3 Challenges in hardware . . . . . . . . . . . . . . . . . . . . . 38
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Chapter3 : Contribution,experiments and results 40
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1 Development environment . . . . . . . . . . . . . . . . . . . . . . . 41
1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2 Proposed methodology . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1 Phase 1: Motion data analysis . . . . . . . . . . . . . . . . . . 43
2.2 Phase 2: Analysis of image data using deep learning . . . . . . 47
2.3 Phase 3: Multimodal learning via late fusion . . . . . . . . . . 51
3 Validation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Model Architectures . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 57
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Conclusion and future work 60
Bibliographie 75 |
| Côte titre : |
MAI/0965 |
|