University Sétif 1 FERHAT ABBAS Faculty of Sciences
Détail de l'auteur
Auteur Jacques Labelle |
Documents disponibles écrits par cet auteur



Titre : Recueil d’exercices de probabilités avec solutions Type de document : texte imprimé Auteurs : Jacques Labelle Editeur : Longueuil, Québec : Loze-Dion Importance : 1 vol. (500 p.) Présentation : ill. Format : 24 cm ISBN/ISSN/EAN : 978-2-923565-52-1 Langues : Français (fre) Catégories : Mathématique Mots-clés : Probabilités Index. décimale : 519.2 - Probabilités Résumé :
La théorie des probabilités est une branche très jeune des mathématiques. Son origine remonte à la fin du XVIIe siècle avec les travaux de Pascal, Fermat et De Moivre qui a publié un pamphlet sur les jeux de hasard. La géométrie, la théorie des nombres et l'algèbre remontent à la nuit des temps avec Euclide, Pythagore, etc. Il faut attendre la veille du XXe siècle pour que Kolmogorov, Tchebycheff et d'autres grands mathématiciens russes lui donnent des fondements rigoureux et axiomatiques. Tous les jours on entend parler de probabilités : la chance de gagner à la loterie, le risque d'être frappé par la foudre, la possibilité de gagner les élections, etc. Au moment de prendre une décision c'est la valeur d'une probabilité que nous évaluons. Dans les temps modernes, elles sont omniprésentes. Ce traité couvre un multitude de situations allant du nombre d'étoiles filantes visibles en une heure par une belle nuit d'été sur le Mont-Tremblant jusqu'à l'espérance de remboursement d'une police d'assurance-automobile.Côte titre : Fs/15615-15619 Recueil d’exercices de probabilités avec solutions [texte imprimé] / Jacques Labelle . - Longueuil, Québec : Loze-Dion, [s.d.] . - 1 vol. (500 p.) : ill. ; 24 cm.
ISBN : 978-2-923565-52-1
Langues : Français (fre)
Catégories : Mathématique Mots-clés : Probabilités Index. décimale : 519.2 - Probabilités Résumé :
La théorie des probabilités est une branche très jeune des mathématiques. Son origine remonte à la fin du XVIIe siècle avec les travaux de Pascal, Fermat et De Moivre qui a publié un pamphlet sur les jeux de hasard. La géométrie, la théorie des nombres et l'algèbre remontent à la nuit des temps avec Euclide, Pythagore, etc. Il faut attendre la veille du XXe siècle pour que Kolmogorov, Tchebycheff et d'autres grands mathématiciens russes lui donnent des fondements rigoureux et axiomatiques. Tous les jours on entend parler de probabilités : la chance de gagner à la loterie, le risque d'être frappé par la foudre, la possibilité de gagner les élections, etc. Au moment de prendre une décision c'est la valeur d'une probabilité que nous évaluons. Dans les temps modernes, elles sont omniprésentes. Ce traité couvre un multitude de situations allant du nombre d'étoiles filantes visibles en une heure par une belle nuit d'été sur le Mont-Tremblant jusqu'à l'espérance de remboursement d'une police d'assurance-automobile.Côte titre : Fs/15615-15619 Exemplaires (5)
Code-barres Cote Support Localisation Section Disponibilité Fs/15615 Fs/15615-15619 Livre Bibliothéque des sciences Français Disponible
DisponibleFs/15616 Fs/15615-15619 Livre Bibliothéque des sciences Français Disponible
DisponibleFs/15617 Fs/15615-15619 Livre Bibliothéque des sciences Français Disponible
DisponibleFs/15618 Fs/15615-15619 Livre Bibliothéque des sciences Français Disponible
DisponibleFs/15619 Fs/15615-15619 Livre Bibliothéque des sciences Français Disponible
Disponible
Titre : Théorie des graphes Type de document : texte imprimé Auteurs : Jacques Labelle Editeur : Outremont : Modulo Année de publication : 1981 Importance : 1 vol (183 p.) Présentation : ill ISBN/ISSN/EAN : 978-2-89113-200-8 Catégories : Mathématique Mots-clés : Théorie des graphes Index. décimale : 511.5 Théorie des graphes Résumé :
Sociologie, chimie, génétique des populations, circuits électriques, réseaux de transport, etc, tous ces domaines sont des champs d'application de la théorie des graphes. L'utilité de celle-ci s'avère fructueuse particulièrement par le développement d'une méthode de pensée simplificatrice, qui ramène les problèmes les plus divers à l'étude de sommets et d'arêtes. Le présent traité, une introduction à la théorie des graphes, tente un juste dosage de chacun des aspects suivants de cette théorie : les "algorithmes" (du chemin minimum, de Ford-Fulkerson, etc.), la "récréation mathématique" (jeux et énigmes) et la "théorie proprement dite" (planarité, théorème des cinq couleurs, graphes eulériens et hamiltoniens, etc.) De la part du lecteur, cette étude ne requiert, au préalable, qu'une connaissance minimale de la théorie des ensembles (voir Appendice) et un brin d'imagination. De niveau du premier cycle universitaire, cet ouvrage réunit, avec les exercices, les éléments d'un premier cours dans cette discipline. De plus, grâce à la présence des solutions présentées en détail, le lecteur autodidacte l'étudiera avec facilité.Note de contenu :
Sommaire
Graphes simples
Graphes orientés
Graphes valués
Planarité
JeuxCôte titre : Fs/19588 Théorie des graphes [texte imprimé] / Jacques Labelle . - Outremont : Modulo, 1981 . - 1 vol (183 p.) : ill.
ISBN : 978-2-89113-200-8
Catégories : Mathématique Mots-clés : Théorie des graphes Index. décimale : 511.5 Théorie des graphes Résumé :
Sociologie, chimie, génétique des populations, circuits électriques, réseaux de transport, etc, tous ces domaines sont des champs d'application de la théorie des graphes. L'utilité de celle-ci s'avère fructueuse particulièrement par le développement d'une méthode de pensée simplificatrice, qui ramène les problèmes les plus divers à l'étude de sommets et d'arêtes. Le présent traité, une introduction à la théorie des graphes, tente un juste dosage de chacun des aspects suivants de cette théorie : les "algorithmes" (du chemin minimum, de Ford-Fulkerson, etc.), la "récréation mathématique" (jeux et énigmes) et la "théorie proprement dite" (planarité, théorème des cinq couleurs, graphes eulériens et hamiltoniens, etc.) De la part du lecteur, cette étude ne requiert, au préalable, qu'une connaissance minimale de la théorie des ensembles (voir Appendice) et un brin d'imagination. De niveau du premier cycle universitaire, cet ouvrage réunit, avec les exercices, les éléments d'un premier cours dans cette discipline. De plus, grâce à la présence des solutions présentées en détail, le lecteur autodidacte l'étudiera avec facilité.Note de contenu :
Sommaire
Graphes simples
Graphes orientés
Graphes valués
Planarité
JeuxCôte titre : Fs/19588 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Fs/19588 Fs/19588 Livre Bibliothéque des sciences Français Disponible
Disponible