| 
			 
					| Titre : | Concepts of modern physics |  
					| Type de document : | texte imprimé |  
					| Auteurs : | Beiser, Arthur, Auteur |  
					| Mention d'édition : | 6e éd. |  
					| Editeur : | USA : Pearson education |  
					| Année de publication : | 2003 |  
					| Collection : | International edition |  
					| Importance : | 1 vol. (542 p.) |  
					| Présentation : | ill. (some col.) |  
					| Format : | 27 cm |  
					| ISBN/ISSN/EAN : | 978-0-07-123460-3 |  
					| Langues : | Anglais (eng) |  
					| Catégories : | Physique 
 |  
					| Mots-clés : | physique moderne |  
					| Index. décimale : | 539 - physique de la matière ; physique atomique, moléculaire, nucléaire, quantique |  
					| Résumé : | La physique moderne est la présentation la plus à jour et la plus accessible de la physique moderne disponible. Le livre est destiné à être utilisé dans un cours d'un semestre couvrant la physique moderne pour les étudiants qui ont déjà eu des cours de physique de base et de calcul. L'équilibre du livre s'appuie davantage sur les idées que sur les méthodes expérimentales et les applications pratiques parce que le premier étudiant est mieux servi par un cadre conceptuel que par une masse de détails. La séquence des sujets suit un ordre logique plutôt que strictement historique. La relativité et les idées quantiques sont considérées d'abord pour fournir un cadre pour comprendre la physique des atomes et des noyaux. La théorie de l'atome est ensuite développée et suivie d'une discussion des propriétés des agrégats d'atomes, ce qui inclut un regard sur la mécanique statistique. Enfin, on examine les noyaux atomiques et les particules élémentaires.
 |  
					| Note de contenu : | Sommaire
 CHAPTER 1
 Relativity 1
 1.1 Special Relativity 2
 All motion is relative; the speed of light in free space is the same
 for all observers
 1.2 Time Dilation 5
 A moving clock ticks more slowly than a clock at rest
 1.3 Doppler Effect 10
 Why the universe is believed to be expanding
 1.4 Length Contraction 15
 Faster means shorter
 1.5 Twin Paradox 17
 A longer life, but it will not seem longer
 1.6 Electricity and Magnetism 19
 Relativity is the bridge
 1.7 Relativistic Momentum 22
 Redefining an important quantity
 1.8 Mass and Energy 26
 Where E0  mc2 comes from
 1.9 Energy and Momentum 30
 How they fit together in relativity
 1.10 General Relativity 33
 Gravity is a warping of spacetime
 APPENDIX I: The Lorentz Transformation 37
 APPENDIX II: Spacetime 46
 CHAPTER 2
 Particle Properties of Waves 52
 2.1 Electromagnetic Waves 53
 Coupled electric and magnetic oscillations that move with the speed of
 light and exhibit typical wave behavior
 2.2 Blackbody Radiation 57
 Only the quantum theory of light can explain its origin
 2.3 Photoelectric Effect 62
 The energies of electrons liberated by light depend on the frequency
 of the light
 2.4 What Is Light? 67
 Both wave and particle
 2.5 X-Rays 68
 They consist of high-energy photons
 2.6 X-Ray Diffraction 72
 How x-ray wavelengths can be determined
 2.7 Compton Effect 75
 Further confirmation of the photon model
 2.8 Pair Production 79
 Energy into matter
 2.9 Photons and Gravity 85
 Although they lack rest mass, photons behave as though they have
 gravitational mass
 CHAPTER 3
 Wave Properties of Particles 92
 3.1 De Broglie Waves 93
 A moving body behaves in certain ways as though it has a wave nature
 3.2 Waves of What? 95
 Waves of probability
 3.3 Describing a Wave 96
 A general formula for waves
 3.4 Phase and Group Velocities 99
 A group of waves need not have the same velocity as the waves
 themselves
 3.5 Particle Diffraction 104
 An experiment that confirms the existence of de Broglie waves
 3.6 Particle in a Box 106
 Why the energy of a trapped particle is quantized
 3.7 Uncertainty Principle I 108
 We cannot know the future because we cannot know the present
 3.8 Uncertainty Principle II 113
 A particle approach gives the same result
 3.9 Applying the Uncertainty Principle 114
 A useful tool, not just a negative statement
 CHAPTER 4
 Atomic Structure 119
 4.1 The Nuclear Atom 120
 An atom is largely empty space
 4.2 Electron Orbits 124
 The planetary model of the atom and why it fails
 4.3 Atomic Spectra 127
 Each element has a characteristic line spectrum
 4.4 The Bohr Atom 130
 Electron waves in the atom
 4.5 Energy Levels and Spectra 133
 A photon is emitted when an electron jumps from one energy level to a
 lower level
 4.6 Correspondence Principle 138
 The greater the quantum number, the closer quantum physics approaches
 classical physics
 4.7 Nuclear Motion 140
 The nuclear mass affects the wavelengths of spectral lines
 4.8 Atomic Excitation 142
 How atoms absorb and emit energy
 4.9 The Laser 145
 How to produce light waves all in step
 APPENDIX: Rutherford Scattering 152
 CHAPTER 5
 Quantum Mechanics 160
 5.1 Quantum Mechanics 161
 Classical mechanics is an approximation of quantum mechanics
 5.2 The Wave Equation 163
 It can have a variety of solutions, including complex ones
 5.3 Schrödinger’s Equation: Time-Dependent Form 166
 A basic physical principle that cannot be derived from anything else
 5.4 Linearity and Superposition 169
 Wave functions add, not probabilities
 5.5 Expectation Values 170
 How to extract information from a wave function
 5.6 Operators 172
 Another way to find expectation values
 5.7 Schrödinger’s Equation: Steady-State Form 174
 Eigenvalues and eigenfunctions
 5.8 Particle in a Box 177
 How boundary conditions and normalization determine wave functions
 5.9 Finite Potential Well 183
 The wave function penetrates the walls, which lowers the energy levels
 5.10 Tunnel Effect 184
 A particle without the energy to pass over a potential barrier may still
 tunnel through it
 5.11 Harmonic Oscillator 187
 Its energy levels are evenly spaced
 APPENDIX: The Tunnel Effect 193
 CHAPTER 6
 Quantum Theory of the Hydrogen Atom 200
 6.1 Schrödinger’s Equation for the Hydrogen Atom 201
 Symmetry suggests spherical polar coordinates
 6.2 Separation of Variables 203
 A differential equation for each variable
 6.3 Quantum Numbers 205
 Three dimensions, three quantum numbers
 6.4 Principal Quantum Number 207
 Quantization of energy
 6.5 Orbital Quantum Number 208
 Quantization of angular-momentum magnitude
 6.6 Magnetic Quantum Number 210
 Quantization of angular-momentum direction
 6.7 Electron Probability Density 212
 No definite orbits
 6.8 Radiative Transitions 218
 What happens when an electron goes from one state to another
 6.9 Selection Rules 220
 Some transitions are more likely to occur than others
 6.10 Zeeman Effect 223
 How atoms interact with a magnetic fie
 CHAPTER 7
 Many-Electron Atoms 228
 7.1 Electron Spin 229
 Round and round it goes forever
 7.2 Exclusion Principle 231
 A different set of quantum numbers for each electron in an atom
 7.3 Symmetric and Antisymmetric Wave Functions 233
 Fermions and bosons
 7.4 Periodic Table 235
 Organizing the elements
 7.5 Atomic Structures 238
 Shells and subshells of electrons
 7.6 Explaining the Periodic Table 240
 How an atom’s electron structure determines its chemical behavior
 7.7 Spin-Orbit Coupling 247
 Angular momenta linked magnetically
 7.8 Total Angular Momentum 249
 Both magnitude and direction are quantized
 7.9 X-Ray Spectra 254
 They arise from transitions to inner shells
 APPENDIX: Atomic Spectra 259
 CHAPTER 8
 Molecules 266
 8.1 The Molecular Bond 267
 Electric forces hold atoms together to form molecules
 8.2 Electron Sharing 269
 The mechanism of the covalent bond
 8.3 The H2
 Molecular Ion 270
 Bonding requires a symmetric wave function
 8.4 The Hydrogen Molecule 274
 The spins of the electrons must be antiparallel
 8.5 Complex Molecules 276
 Their geometry depends on the wave functions of the outer electrons of
 their atoms
 8.6 Rotational Energy Levels 282
 Molecular rotational spectra are in the microwave region
 8.7 Vibrational Energy Levels 285
 A molecule may have many different modes of vibration
 8.8 Electronic Spectra of Molecules 291
 How fluorescence and phsophorescence occur
 CHAPTER 9
 Statistical Mechanics 296
 9.1 Statistical Distributions 297
 Three different kinds
 9.2 Maxwell-Boltzmann Statistics 298
 Classical particles such as gas molecules obey them
 9.3 Molecular Energies in an Ideal Gas 300
 They vary about an average of
 3
 2
 kT
 9.4 Quantum Statistics 305
 Bosons and fermions have different distribution functions
 9.5 Rayleigh-Jeans Formula 311
 The classical approach to blackbody radiation
 9.6 Planck Radiation Law 313
 How a photon gas behaves
 9.7 Einstein’s Approach 318
 Introducing stimulated emission
 9.8 Specific Heats of Solids 320
 Classical physics fails again
 9.9 Free Electrons in a Metal 323
 No more than one electron per quantum state
 9.10 Electron-Energy Distribution 325
 Why the electrons in a metal do not contribute to its specific heat except
 at very high and very low temperatures
 9.11 Dying Stars 327
 What happens when a star runs out of fuel
 CHAPTER 10
 The Solid State 335
 10.1 Crystalline and Amorphous Solids 336
 Long-range and short-range order
 10.2 Ionic Crystals 338
 The attraction of opposites can produce a stable union
 10.3 Covalent Crystals 342
 Shared electrons lead to the strongest bonds
 10.4 Van der Waals Bond 345
 Weak but everywhere
 10.5 Metallic Bond 348
 A gas of free electrons is responsible for the characteristic properties
 of a metal
 10.6 Band Theory of Solids 354
 The energy band structure of a solid determines whether it is a conductor,
 an insulator, or a semiconductor
 10.7 Semiconductor Devices 361
 The properties of the p-n junction are responsible for the microelectronics
 industry
 10.8 Energy Bands: Alternative Analysis 369
 How the periodicity of a crystal lattice leads to allowed and forbidden bands
 10.9 Superconductivity 376
 No resistance at all, but only at very low temperatures (so far)
 10.10 Bound Electron Pairs 381
 The key to superconductivity
 CHAPTER 11
 Nuclear Structure 387
 11.1 Nuclear Composition 388
 Atomic nuclei of the same element have the same numbers of protons
 but can have different numbers of neutrons
 11.2 Some Nuclear Properties 392
 Small in size, a nucleus may have angular momentum and a magnetic
 moment
 11.3 Stable Nuclei 396
 Why some combinations of neutrons and protons are more stable
 than others
 11.4 Binding Energy 399
 The missing energy that keeps a nucleus together
 11.5 Liquid-Drop Model 403
 A simple explanation for the binding-energy curve
 11.6 Shell Model 408
 Magic numbers in the nucleus
 11.7 Meson Theory of Nuclear Forces 412
 Particle exchange can produce either attraction or repulsion
 CHAPTER 12
 Nuclear Transformations 418
 12.1 Radioactive Decay 419
 Five kinds
 12.2 Half-Life 424
 Less and less, but always some left
 12.3 Radioactive Series 430
 Four decay sequences that each end in a stable daughter
 12.4 Alpha Decay 432
 Impossible in classical physics, it nevertheless occurs
 12.5 Beta Decay 436
 Why the neutrino should exist and how it was discovered
 12.6 Gamma Decay 440
 Like an excited atom, an excited nucleus can emit a photon
 12.7 Cross Section 441
 A measure of the likelihood of a particular interaction
 12.8 Nuclear Reactions 446
 In many cases, a compound nucleus is formed first
 12.9 Nuclear Fission 450
 Divide and conquer
 12.10 Nuclear Reactors 454
 E0  mc2  $$$
 12.11 Nuclear Fusion in Stars 460
 How the sun and stars get their energy
 12.12 Fusion Reactors 463
 The energy source of the future?
 APPENDIX: Theory of Alpha Decay 468
 CHAPTER 13
 Elementary Particles 474
 13.1 Interactions and Particles 475
 Which affects which
 13.2 Leptons 477
 Three pairs of truly elementary particles
 13.3 Hadrons 481
 Particles subject to the strong interaction
 13.4 Elementary Particle Quantum Numbers 485
 Finding order in apparent chaos
 13.5 Quarks 489
 The ultimate constituents of hadrons
 13.6 Field Bosons 494
 Carriers of the interactions
 13.7 The Standard Model and Beyond 496
 Putting it all together
 13.8 History of the Universe 498
 It began with a bang
 13.9 The Future 501
 “In my beginning is my end.” (T. S. Eliot, Four Quartets)
 APPENDIX
 Atomic Masses 507
 Answers to Odd-Numbered Exercises 516
 For Further Study 525
 Credits 529
 Index 531
 |  
					| Côte titre : | Fs/12672,Fs/10354,Fs/12263-12264 | 
Concepts of modern physics [texte imprimé] / Beiser, Arthur , Auteur  . -  6e éd. . - USA : Pearson education , 2003 . - 1 vol. (542 p.) : ill. (some col.) ; 27 cm. - (International edition ) .ISBN  : 978-0-07-123460-3Langues  : Anglais (eng ) 
					| Catégories : | Physique 
 |  
					| Mots-clés : | physique moderne |  
					| Index. décimale : | 539 - physique de la matière ; physique atomique, moléculaire, nucléaire, quantique |  
					| Résumé : | La physique moderne est la présentation la plus à jour et la plus accessible de la physique moderne disponible. Le livre est destiné à être utilisé dans un cours d'un semestre couvrant la physique moderne pour les étudiants qui ont déjà eu des cours de physique de base et de calcul. L'équilibre du livre s'appuie davantage sur les idées que sur les méthodes expérimentales et les applications pratiques parce que le premier étudiant est mieux servi par un cadre conceptuel que par une masse de détails. La séquence des sujets suit un ordre logique plutôt que strictement historique. La relativité et les idées quantiques sont considérées d'abord pour fournir un cadre pour comprendre la physique des atomes et des noyaux. La théorie de l'atome est ensuite développée et suivie d'une discussion des propriétés des agrégats d'atomes, ce qui inclut un regard sur la mécanique statistique. Enfin, on examine les noyaux atomiques et les particules élémentaires.
 |  
					| Note de contenu : | Sommaire
 CHAPTER 1
 Relativity 1
 1.1 Special Relativity 2
 All motion is relative; the speed of light in free space is the same
 for all observers
 1.2 Time Dilation 5
 A moving clock ticks more slowly than a clock at rest
 1.3 Doppler Effect 10
 Why the universe is believed to be expanding
 1.4 Length Contraction 15
 Faster means shorter
 1.5 Twin Paradox 17
 A longer life, but it will not seem longer
 1.6 Electricity and Magnetism 19
 Relativity is the bridge
 1.7 Relativistic Momentum 22
 Redefining an important quantity
 1.8 Mass and Energy 26
 Where E0  mc2 comes from
 1.9 Energy and Momentum 30
 How they fit together in relativity
 1.10 General Relativity 33
 Gravity is a warping of spacetime
 APPENDIX I: The Lorentz Transformation 37
 APPENDIX II: Spacetime 46
 CHAPTER 2
 Particle Properties of Waves 52
 2.1 Electromagnetic Waves 53
 Coupled electric and magnetic oscillations that move with the speed of
 light and exhibit typical wave behavior
 2.2 Blackbody Radiation 57
 Only the quantum theory of light can explain its origin
 2.3 Photoelectric Effect 62
 The energies of electrons liberated by light depend on the frequency
 of the light
 2.4 What Is Light? 67
 Both wave and particle
 2.5 X-Rays 68
 They consist of high-energy photons
 2.6 X-Ray Diffraction 72
 How x-ray wavelengths can be determined
 2.7 Compton Effect 75
 Further confirmation of the photon model
 2.8 Pair Production 79
 Energy into matter
 2.9 Photons and Gravity 85
 Although they lack rest mass, photons behave as though they have
 gravitational mass
 CHAPTER 3
 Wave Properties of Particles 92
 3.1 De Broglie Waves 93
 A moving body behaves in certain ways as though it has a wave nature
 3.2 Waves of What? 95
 Waves of probability
 3.3 Describing a Wave 96
 A general formula for waves
 3.4 Phase and Group Velocities 99
 A group of waves need not have the same velocity as the waves
 themselves
 3.5 Particle Diffraction 104
 An experiment that confirms the existence of de Broglie waves
 3.6 Particle in a Box 106
 Why the energy of a trapped particle is quantized
 3.7 Uncertainty Principle I 108
 We cannot know the future because we cannot know the present
 3.8 Uncertainty Principle II 113
 A particle approach gives the same result
 3.9 Applying the Uncertainty Principle 114
 A useful tool, not just a negative statement
 CHAPTER 4
 Atomic Structure 119
 4.1 The Nuclear Atom 120
 An atom is largely empty space
 4.2 Electron Orbits 124
 The planetary model of the atom and why it fails
 4.3 Atomic Spectra 127
 Each element has a characteristic line spectrum
 4.4 The Bohr Atom 130
 Electron waves in the atom
 4.5 Energy Levels and Spectra 133
 A photon is emitted when an electron jumps from one energy level to a
 lower level
 4.6 Correspondence Principle 138
 The greater the quantum number, the closer quantum physics approaches
 classical physics
 4.7 Nuclear Motion 140
 The nuclear mass affects the wavelengths of spectral lines
 4.8 Atomic Excitation 142
 How atoms absorb and emit energy
 4.9 The Laser 145
 How to produce light waves all in step
 APPENDIX: Rutherford Scattering 152
 CHAPTER 5
 Quantum Mechanics 160
 5.1 Quantum Mechanics 161
 Classical mechanics is an approximation of quantum mechanics
 5.2 The Wave Equation 163
 It can have a variety of solutions, including complex ones
 5.3 Schrödinger’s Equation: Time-Dependent Form 166
 A basic physical principle that cannot be derived from anything else
 5.4 Linearity and Superposition 169
 Wave functions add, not probabilities
 5.5 Expectation Values 170
 How to extract information from a wave function
 5.6 Operators 172
 Another way to find expectation values
 5.7 Schrödinger’s Equation: Steady-State Form 174
 Eigenvalues and eigenfunctions
 5.8 Particle in a Box 177
 How boundary conditions and normalization determine wave functions
 5.9 Finite Potential Well 183
 The wave function penetrates the walls, which lowers the energy levels
 5.10 Tunnel Effect 184
 A particle without the energy to pass over a potential barrier may still
 tunnel through it
 5.11 Harmonic Oscillator 187
 Its energy levels are evenly spaced
 APPENDIX: The Tunnel Effect 193
 CHAPTER 6
 Quantum Theory of the Hydrogen Atom 200
 6.1 Schrödinger’s Equation for the Hydrogen Atom 201
 Symmetry suggests spherical polar coordinates
 6.2 Separation of Variables 203
 A differential equation for each variable
 6.3 Quantum Numbers 205
 Three dimensions, three quantum numbers
 6.4 Principal Quantum Number 207
 Quantization of energy
 6.5 Orbital Quantum Number 208
 Quantization of angular-momentum magnitude
 6.6 Magnetic Quantum Number 210
 Quantization of angular-momentum direction
 6.7 Electron Probability Density 212
 No definite orbits
 6.8 Radiative Transitions 218
 What happens when an electron goes from one state to another
 6.9 Selection Rules 220
 Some transitions are more likely to occur than others
 6.10 Zeeman Effect 223
 How atoms interact with a magnetic fie
 CHAPTER 7
 Many-Electron Atoms 228
 7.1 Electron Spin 229
 Round and round it goes forever
 7.2 Exclusion Principle 231
 A different set of quantum numbers for each electron in an atom
 7.3 Symmetric and Antisymmetric Wave Functions 233
 Fermions and bosons
 7.4 Periodic Table 235
 Organizing the elements
 7.5 Atomic Structures 238
 Shells and subshells of electrons
 7.6 Explaining the Periodic Table 240
 How an atom’s electron structure determines its chemical behavior
 7.7 Spin-Orbit Coupling 247
 Angular momenta linked magnetically
 7.8 Total Angular Momentum 249
 Both magnitude and direction are quantized
 7.9 X-Ray Spectra 254
 They arise from transitions to inner shells
 APPENDIX: Atomic Spectra 259
 CHAPTER 8
 Molecules 266
 8.1 The Molecular Bond 267
 Electric forces hold atoms together to form molecules
 8.2 Electron Sharing 269
 The mechanism of the covalent bond
 8.3 The H2
 Molecular Ion 270
 Bonding requires a symmetric wave function
 8.4 The Hydrogen Molecule 274
 The spins of the electrons must be antiparallel
 8.5 Complex Molecules 276
 Their geometry depends on the wave functions of the outer electrons of
 their atoms
 8.6 Rotational Energy Levels 282
 Molecular rotational spectra are in the microwave region
 8.7 Vibrational Energy Levels 285
 A molecule may have many different modes of vibration
 8.8 Electronic Spectra of Molecules 291
 How fluorescence and phsophorescence occur
 CHAPTER 9
 Statistical Mechanics 296
 9.1 Statistical Distributions 297
 Three different kinds
 9.2 Maxwell-Boltzmann Statistics 298
 Classical particles such as gas molecules obey them
 9.3 Molecular Energies in an Ideal Gas 300
 They vary about an average of
 3
 2
 kT
 9.4 Quantum Statistics 305
 Bosons and fermions have different distribution functions
 9.5 Rayleigh-Jeans Formula 311
 The classical approach to blackbody radiation
 9.6 Planck Radiation Law 313
 How a photon gas behaves
 9.7 Einstein’s Approach 318
 Introducing stimulated emission
 9.8 Specific Heats of Solids 320
 Classical physics fails again
 9.9 Free Electrons in a Metal 323
 No more than one electron per quantum state
 9.10 Electron-Energy Distribution 325
 Why the electrons in a metal do not contribute to its specific heat except
 at very high and very low temperatures
 9.11 Dying Stars 327
 What happens when a star runs out of fuel
 CHAPTER 10
 The Solid State 335
 10.1 Crystalline and Amorphous Solids 336
 Long-range and short-range order
 10.2 Ionic Crystals 338
 The attraction of opposites can produce a stable union
 10.3 Covalent Crystals 342
 Shared electrons lead to the strongest bonds
 10.4 Van der Waals Bond 345
 Weak but everywhere
 10.5 Metallic Bond 348
 A gas of free electrons is responsible for the characteristic properties
 of a metal
 10.6 Band Theory of Solids 354
 The energy band structure of a solid determines whether it is a conductor,
 an insulator, or a semiconductor
 10.7 Semiconductor Devices 361
 The properties of the p-n junction are responsible for the microelectronics
 industry
 10.8 Energy Bands: Alternative Analysis 369
 How the periodicity of a crystal lattice leads to allowed and forbidden bands
 10.9 Superconductivity 376
 No resistance at all, but only at very low temperatures (so far)
 10.10 Bound Electron Pairs 381
 The key to superconductivity
 CHAPTER 11
 Nuclear Structure 387
 11.1 Nuclear Composition 388
 Atomic nuclei of the same element have the same numbers of protons
 but can have different numbers of neutrons
 11.2 Some Nuclear Properties 392
 Small in size, a nucleus may have angular momentum and a magnetic
 moment
 11.3 Stable Nuclei 396
 Why some combinations of neutrons and protons are more stable
 than others
 11.4 Binding Energy 399
 The missing energy that keeps a nucleus together
 11.5 Liquid-Drop Model 403
 A simple explanation for the binding-energy curve
 11.6 Shell Model 408
 Magic numbers in the nucleus
 11.7 Meson Theory of Nuclear Forces 412
 Particle exchange can produce either attraction or repulsion
 CHAPTER 12
 Nuclear Transformations 418
 12.1 Radioactive Decay 419
 Five kinds
 12.2 Half-Life 424
 Less and less, but always some left
 12.3 Radioactive Series 430
 Four decay sequences that each end in a stable daughter
 12.4 Alpha Decay 432
 Impossible in classical physics, it nevertheless occurs
 12.5 Beta Decay 436
 Why the neutrino should exist and how it was discovered
 12.6 Gamma Decay 440
 Like an excited atom, an excited nucleus can emit a photon
 12.7 Cross Section 441
 A measure of the likelihood of a particular interaction
 12.8 Nuclear Reactions 446
 In many cases, a compound nucleus is formed first
 12.9 Nuclear Fission 450
 Divide and conquer
 12.10 Nuclear Reactors 454
 E0  mc2  $$$
 12.11 Nuclear Fusion in Stars 460
 How the sun and stars get their energy
 12.12 Fusion Reactors 463
 The energy source of the future?
 APPENDIX: Theory of Alpha Decay 468
 CHAPTER 13
 Elementary Particles 474
 13.1 Interactions and Particles 475
 Which affects which
 13.2 Leptons 477
 Three pairs of truly elementary particles
 13.3 Hadrons 481
 Particles subject to the strong interaction
 13.4 Elementary Particle Quantum Numbers 485
 Finding order in apparent chaos
 13.5 Quarks 489
 The ultimate constituents of hadrons
 13.6 Field Bosons 494
 Carriers of the interactions
 13.7 The Standard Model and Beyond 496
 Putting it all together
 13.8 History of the Universe 498
 It began with a bang
 13.9 The Future 501
 “In my beginning is my end.” (T. S. Eliot, Four Quartets)
 APPENDIX
 Atomic Masses 507
 Answers to Odd-Numbered Exercises 516
 For Further Study 525
 Credits 529
 Index 531
 |  
					| Côte titre : | Fs/12672,Fs/10354,Fs/12263-12264 | 
 |  |