Titre : |
Physics in nuclear medicine |
Type de document : |
texte imprimé |
Auteurs : |
Simon R. Cherry ; James A. Sorenson ; Michael E. Phelps |
Mention d'édition : |
4th ed. |
Editeur : |
Philadelphia, Penn. : Saunders/Elsevier |
Année de publication : |
2012 |
Importance : |
1 vol. (523 p.) |
Présentation : |
ill. (chiefly col.) |
Format : |
27 cm |
ISBN/ISSN/EAN : |
978-1-4160-5198-5 |
Note générale : |
978-1-4160-5198-5 |
Langues : |
Anglais (eng) |
Catégories : |
Physique Spécialités multiples
|
Mots-clés : |
Physique : médecine nucléaire
Médecine nucléaire |
Index. décimale : |
610.1 - Médecine et santé |
Résumé : |
Physique en médecine nucléaire - par les Drs. Simon R. Cherry, James A. Sorenson et Michael E. Phelps - fournit des conseils actuels et complets sur la physique sous-jacente à la médecine nucléaire moderne et l'imagerie à l'aide de traceurs marqués radioactivement. Cette quatrième édition révisée et mise à jour présente une nouvelle présentation en couleur, ainsi que les dernières informations sur l'instrumentation et la technologie. Restez au courant des développements cruciaux de l'imagerie hybride (PET / CT et SPECT / CT) et de l'imagerie des petits animaux et profitez de la nouvelle section sur la modélisation cinétique du traceur dans l'imagerie neuroréceptrice. De plus, vous pouvez renforcer votre compréhension avec les animations graphiques en ligne à www.expertconsult.com, ainsi que le texte entièrement consultable et les outils de calcul |
Note de contenu : |
Sommaire
What is Nuclear Medicine?
CHAPTER 1 What Is Nuclear Medicine? 1
A.FUNDAMENTAL CONCEPTS 1
B.THE POWER OF NUCLEAR MEDICINE 1
C. HISTORICAL OVERVIEW 2
D. CURRENT PRACTICE OF NUCLEAR MEDICINE 4
E. THE ROLE OF PHYSICS IN NUCLEAR MEDICINE 6
CHAPTER 2 Basic Atomic and Nuclear Physics 7
A. QUANTITIES AND UNITS 7
1. Types of Quantities and Units 7
2. Mass and Energy Units 7
B. RADIATION 8
C. ATOMS 9
1. Composition and Structure 9
2. Electron Binding Energies and Energy Levels 9
3. Atomic Emissions 10
D. THE NUCLEUS 13
1. Composition 13
2. Terminology and Notation 13
3. Nuclear Families 14
4. Forces and Energy Levels within the Nucleus 14
5. Nuclear Emissions 15
6. Nuclear Binding Energy 15
7. Characteristics of Stable Nuclei 16
CHAPTER 3 Modes of Radioactive Decay 19
A. GENERAL CONCEPTS 19
B. CHEMISTRY AND RADIOACTIVITY 19
C. DECAY BY β−
EMISSION 20
D. DECAY BY (β−
, γ ) EMISSION 21
E. ISOMERIC TRANSITION AND INTERNAL CONVERSION 22
F. ELECTRON CAPTURE AND (EC, γ ) DECAY 24
G. POSITRON (β+
) AND (β+
, γ ) DECAY 25
H. COMPETITIVE β+
AND EC DECAY 26
I. DECAY BY α EMISSION AND BY NUCLEAR FISSION 26
J. DECAY MODES AND THE LINE OF STABILITY 28
K. SOURCES OF INFORMATION ON RADIONUCLIDES 28
CHAPTER 4 Decay of Radioactivity 31
A. ACTIVITY 31
1. The Decay Constant 31
2. Definition and Units of Activity 31
B. EXPONENTIAL DECAY 32
1. The Decay Factor 32
2. Half-Life 33
3. Average Lifetime 34
C. METHODS FOR DETERMINING DECAY FACTORS 34
1. Tables of Decay Factors 34
2. Pocket Calculators 35
3. Universal Decay Curve 35
D. IMAGE-FRAME DECAY CORRECTIONS 35
E. SPECIFIC ACTIVITY 37
F. DECAY OF A MIXED RADIONUCLIDE SAMPLE 38
G. PARENT-DAUGHTER DECAY 39
1. The Bateman Equations 39
2. Secular Equilibrium 40
3. Transient Equilibrium 41
4. No Equilibrium 41
CHAPTER 5 Radionuclide and Radiopharmaceutical Production 43
A. REACTOR-PRODUCED RADIONUCLIDES 43
1. Reactor Principles 43
2. Fission Fragments 44
3. Neutron Activation 45
B. ACCELERATOR-PRODUCED RADIONUCLIDES 47
1. Charged-Particle Accelerators 47
2. Cyclotron Principles 47
3. Cyclotron-Produced Radionuclides 49
C. RADIONUCLIDE GENERATORS 50
D. EQUATIONS FOR RADIONUCLIDE PRODUCTION 53
1. Activation Cross-Sections 53
2. Activation Rates 54
3. Buildup and Decay of Activity 56
E. RADIONUCLIDES FOR NUCLEAR MEDICINE 57
1. General Considerations 57
2. Specific Considerations 57
F. RADIOPHARMACEUTICALS FOR CLINICAL APPLICATIONS 59
1. General Considerations 59
2. Labeling Strategies 59
3. Technetium-99m-Labeled Radiopharmaceuticals 60
4. Radiopharmaceuticals Labeled with Positron Emitters 60
5. Radiopharmaceuticals for Therapy Applications 61
6. Radiopharmaceuticals in Clinical Nuclear Medicine 61
CHAPTER 6 Interaction of Radiation with Matter 63
A. INTERACTIONS OF CHARGED PARTICLES WITH MATTER 63
1. Charged-Particle Interaction Mechanisms 63
2. Collisional Versus Radiation Losses 64
3. Charged-Particle Tracks 66
4. Deposition of Energy Along a Charged-Particle Track 67
5. The Cerenkov Effect 68
B. CHARGED-PARTICLE RANGES 70
1. Alpha Particles 70
2. Beta Particles and Electrons 71
C. PASSAGE OF HIGH-ENERGY PHOTONS THROUGH MATTER 74
1. Photon Interaction Mechanisms 74
2. The Photoelectric Effect 74
3. Compton Scattering 74
4. Pair Production 76
5. Coherent (Rayleigh) Scattering 77
6. Deposition of Photon Energy in Matter 77
D. ATTENUATION OF PHOTON BEAMS 78
1. Attenuation Coefficients 78
2. Thick Absorbers, Narrow-Beam Geometry 79
3. Thick Absorbers, Broad-Beam Geometry 83
4. Polyenergetic Sources 84
CHAPTER 7 Radiation Detectors 87
A. GAS-FILLED DETECTORS 87
1. Basic Principles 87
2. Ionization Chambers 87
3. Proportional Counters 91
4. Geiger-Müller Counters 92
B. SEMICONDUCTOR DETECTORS 96
C. SCINTILLATION DETECTORS 97
1. Basic Principles 97
2. Photomultiplier Tubes 98
3. Photodiodes 99
4. Inorganic Scintillators 100
5. Considerations in Choosing an Inorganic Scintillator 103
6. Organic Scintillators 104
CHAPTER 8 Electronic Instrumentation for Radiation Detection
Systems 107
A. PREAMPLIFIERS 107
B. AMPLIFIERS 110
1. Amplification and Pulse-Shaping Functions 110
2. Resistor-Capacitor Shaping 111
3. Baseline Shift and Pulse Pile-Up 112
C. PULSE-HEIGHT ANALYZERS 113
1. Basic Functions 113
2. Single-Channel Analyzers 113
3. Timing Methods 114
4. Multichannel Analyzers 116
D. TIME-TO-AMPLITUDE CONVERTERS 118
E. DIGITAL COUNTERS AND RATE METERS 119
1. Scalers, Timers, and Counters 119
2. Analog Rate Meters 120
F. COINCIDENCE UNITS 121
G. HIGH-VOLTAGE POWER SUPPLIES 122
H. NUCLEAR INSTRUMENT MODULES 122
I. OSCILLOSCOPES 123
1. Cathode Ray Tube 123
2. Analog Oscilloscope 124
3. Digital Oscilloscope 1
CHAPTER 9 Nuclear Counting Statistics 125
A. TYPES OF MEASUREMENT ERROR 125
B. NUCLEAR COUNTING STATISTICS 126
1. The Poisson Distribution 126
2. The Standard Deviation 128
3. The Gaussian Distribution 128
C. PROPAGATION OF ERRORS 128
1. Sums and Differences 129
2. Constant Multipliers 129
3. Products and Ratios 129
4. More Complicated Combinations 129
D. APPLICATIONS OF STATISTICAL ANALYSIS 130
1. Effects of Averaging 130
2. Counting Rates 130
3. Significance of Differences Between Counting Measurements 130
4. Effects of Background 131
5. Minimum Detectable Activity 131
6. Comparing Counting Systems 132
7. Estimating Required Counting Times 132
8. Optimal Division of Counting Times 133
E. STATISTICAL TESTS 133
1. The χ2
Test 133
2. The t-Test 135
3. Treatment of “Outliers” 138
4CHAPTER 10 Pulse-Height Spectrometry 141
A. BASIC PRINCIPLES 141
B. SPECTROMETRY WITH NaI(Tl) 142
1. The Ideal Pulse-Height Spectrum 142
2. The Actual Spectrum 143
3. Effects of Detector Size 145
4. Effects of Counting Rate 146
5. General Effects of γ-Ray Energy 147
6. Energy Linearity 147
7. Energy Resolution 148
C. SPECTROMETRY WITH OTHER DETECTORS 151
1. Semiconductor Detector Spectrometers 151
2. Liquid Scintillation Spectrometry 152
3. Proportional Counter Spectrometers 153
Linear Regression 139
CHAPTER 10 Pulse-Height Spectrometry 141
A. BASIC PRINCIPLES 141
B. SPECTROMETRY WITH NaI(Tl) 142
1. The Ideal Pulse-Height Spectrum 142
2. The Actual Spectrum 143
3. Effects of Detector Size 145
4. Effects of Counting Rate 146
5. General Effects of γ-Ray Energy 147
6. Energy Linearity 147
7. Energy Resolution 148
C. SPECTROMETRY WITH OTHER DETECTORS 151
1. Semiconductor Detector Spectrometers 151
2. Liquid Scintillation Spectrometry 152
3. Proportional Counter Spectrometers 153
CHAPTER 11 Problems in Radiation Detection and Measurement 155
A. DETECTION EFFICIENCY 155
1. Components of Detection Efficiency 155
2. Geometric Efficiency 156
3. Intrinsic Efficiency 158
4. Energy-Selective Counting 159
5. Some Complicating Factors 160
6. Calibration Sources 164
B. PROBLEMS IN THE DETECTION AND MEASUREMENT
OF β PARTICLES 166
C. DEAD TIME 168
1. Causes of Dead Time 168
2. Mathematical Models 168
3. Window Fraction Effects 170
4. Dead Time Correction Methods 170
D. QUALITY ASSURANCE FOR RADIATION MEASUREMENT SYSTEMS 171
CHAPTER 12 Counting Systems 173
A. NaI(Tl) WELL COUNTER 173
1. Detector Characteristics 173
2. Detection Efficiency 174
3. Sample Volume Effects 175
4. Assay of Absolute Activity 177
5. Shielding and Background 177
6. Energy Calibration 178
7. Multiple Radionuclide Source Counting 178
8. Dead Time 179
9. Automated Multiple-Sample Systems 179
10. Applications 182
B. COUNTING WITH CONVENTIONAL NaI(Tl) DETECTORS 182
1. Large Sample Volumes 182
2. Liquid and Gas Flow Counting 182
C. LIQUID SCINTILLATION COUNTERS 182
1. General Characteristics 182
2. Pulse-Height Spectrometry 184
3. Counting Vials 184
4. Energy and Efficiency Calibration 185
5. Quench Corrections 185
6. Sample Preparation Techniques 187
7. Cerenkov Counting 188
8. Liquid and Gas Flow Counting 188
9. Automated Multiple-Sample LS Counters 188
10. Applications 189
D. GAS-FILLED DETECTORS 189
1. Dose Calibrators 189
2. Gas Flow Counters 190
E. SEMICONDUCTOR DETECTOR SYSTEMS 190
1. System Components 190
2. Applications 191
F. IN VIVO COUNTING SYSTEMS 192
1. NaI(Tl) Probe Systems 192
2. Miniature γ-Ray and β Probes for Surgical Use 192
3. Whole-Body Counters 194
CHAPTER 13 The Gamma Camera: Basic Principles 195
A. GENERAL CONCEPTS OF RADIONUCLIDE IMAGING 195
B. BASIC PRINCIPLES OF THE GAMMA CAMERA 196
1. System Components 196
2. Detector System and Electronics 197
3. Collimators 201
4. Event Detection in a Gamma Camera 204
C. TYPES OF GAMMA CAMERAS AND THEIR CLINICAL USES 206
CHAPTER 14 The Gamma Camera: Performance Characteristics 209
A. BASIC PERFORMANCE CHARACTERISTICS 209
1. Intrinsic Spatial Resolution 209
2. Detection Efficiency 211
3. Energy Resolution 211
4. Performance at High Counting Rates 213
B. DETECTOR LIMITATIONS: NONUNIFORMITY AND NONLINEARITY 216
1. Image Nonlinearity 216
2. Image Nonuniformity 217
3. Nonuniformity Correction Techniques 217
4. Gamma Camera Tuning 219
C. DESIGN AND PERFORMANCE CHARACTERISTICS OF PARALLEL-HOLE
COLLIMATORS 220
1. Basic Limitations in Collimator Performance 220
2. Septal Thickness 220
3. Geometry of Collimator Holes 222
4. System Resolution 225
D. PERFORMANCE CHARACTERISTICS OF CONVERGING, DIVERGING,
AND PINHOLE COLLIMATORS 225
E. MEASUREMENTS OF GAMMA CAMERA PERFORMANCE 228
1. Intrinsic Resolution 229
2. System Resolution 229
3. Spatial Linearity 229
4. Uniformity 230
5. Counting Rate Performance 230
6. Energy Resolution 231
7. System Sensitivity 231
CHAPTER 15 Image Quality in Nuclear Medicine 233
A. BASIC METHODS FOR CHARACTERIZING AND EVALUATING
IMAGE QUALITY 233
B. SPATIAL RESOLUTION 233
1. Factors Affecting Spatial Resolution 233
2. Methods for Evaluating Spatial Resolution 234
C. CONTRAST 239
D. NOISE 243
1. Types of Image Noise 243
2. Random Noise and Contrast-to-Noise Ratio 243
E. OBSERVER PERFORMANCE STUDIES 247
1. Contrast-Detail Studies 247
2. Receiver Operating Characteristic Studies 248
CHAPTER 16 Tomographic Reconstruction in Nuclear Medicine 253
A. GENERAL CONCEPTS, NOTATION, AND TERMINOLOGY 254
B. BACKPROJECTION AND FOURIER-BASED TECHNIQUES 256
1. Simple Backprojection 256
2. Direct Fourier Transform Reconstruction 258
3. Filtered Backprojection 260
4. Multislice Imaging 262
C. IMAGE QUALITY IN FOURIER TRANSFORM AND FILTERED
BACKPROJECTION TECHNIQUES 263
1. Effects of Sampling on Image Quality 263
2. Sampling Coverage and Consistency Requirements 266
3. Noise Propagation, Signal-to-Noise Ratio, and Contrast-to-Noise
Ratio 266
D. ITERATIVE RECONSTRUCTION ALGORITHMS 270
1. General Concepts of Iterative Reconstruction 270
2. Expectation-Maximization Reconstruction 272
E. RECONSTRUCTION OF FAN-BEAM, CONE-BEAM AND PINHOLE SPECT
DATA, AND 3-D PET DATA 273
1. Reconstruction of Fan-Beam Data 273
2. Reconstruction of Cone-Beam and Pinhole Data 274
3. 3-D PET Reconstruction 275
CHAPTER 17 Single Photon Emission Computed Tomography 279
A. SPECT SYSTEMS 279
1. Gamma Camera SPECT Systems 279
2. SPECT Systems for Brain Imaging 280
3. SPECT Systems for Cardiac Imaging 281
4. SPECT Systems for Small-Animal Imaging 283
B. PRACTICAL IMPLEMENTATION OF SPECT 285
1. Attenuation Effects and Conjugate Counting 287
2. Attenuation Correction 293
3. Transmission Scans and Attenuation Maps 294
4. Scatter Correction 296
5. Partial-Volume Effects 299
C. PERFORMANCE CHARACTERISTICS OF SPECT SYSTEMS 299
1. Spatial Resolution 301
2. Volume Sensitivity 301
3. Other Measurements of Performance 302
4. Quality Assurance in SPECT 302
D. APPLICATIONS OF SPECT 303
CHAPTER 18 Positron Emission Tomography 307
A. BASIC PRINCIPLES OF PET IMAGING 307
1. Annihilation Coincidence Detection 307
2. Time-of-Flight PET 309
3. Spatial Resolution: Detectors 310
4. Spatial Resolution: Positron Physics 312
5. Spatial Resolution: Depth-of-Interaction Effect 316
6. Spatial Resolution: Sampling 318
7. Spatial Resolution: Reconstruction Filters 319
8. Sensitivity 319
9. Event Types in Annihilation Coincidence Detection 32
CHAPTER 18 Positron Emission Tomography 307
A. BASIC PRINCIPLES OF PET IMAGING 307
1. Annihilation Coincidence Detection 307
2. Time-of-Flight PET 309
3. Spatial Resolution: Detectors 310
4. Spatial Resolution: Positron Physics 312
5. Spatial Resolution: Depth-of-Interaction Effect 316
6. Spatial Resolution: Sampling 318
7. Spatial Resolution: Reconstruction Filters 319
8. Sensitivity 319
9. Event Types in Annihilation Coincidence Detection 322
B. PET DETECTOR AND SCANNER DESIGNS 324
1. Block Detectors 324
2. Modified Block Detectors 325
3. Whole-Body PET Systems 326
4. Specialized PET Scanners 330
5. Small-Animal PET Scanners 331
C. DATA ACQUISITION FOR PET 332
1. Two-Dimensional Data Acquisition 332
2. Three-Dimensional Data Acquisition 332
3. Data Acquisition for Dynamic Studies and Whole-Body Scans 335
D. DATA CORRECTIONS AND QUANTITATIVE ASPECTS OF PET 335
1. Normalization 335
2. Correction for Random Coincidences 336
3. Correction for Scattered Radiation 337
4. Attenuation Correction 338
5. Dead Time Correction 339
6. Absolute Quantification of PET Images 339
E. PERFORMANCE CHARACTERISTICS OF PET SYSTEMS 340
F. CLINICAL AND RESEARCH APPLICATIONS OF PET 341
CHAPTER 19 Hybrid Imaging: SPECT/CT and PET/CT 345
A. MOTIVATION FOR HYBRID SYSTEMS 345
B. X-RAY COMPUTED TOMOGRAPHY 346
1. X-ray Tube 346
2. X-ray Detectors 347
3. X-ray CT Scanner 348
4. CT Reconstruction 348
C. SPECT/CT SYSTEMS 350
1. Clinical SPECT/CT Scanners 350
2. Small-Animal SPECT/CT Scanners 352
D. PET/CT 354
1. Clinical PET/CT Scanners 354
2. Small-Animal PET/CT Scanners 356
E. ATTENUATION AND SCATTER CORRECTION USING CT 356
1. Computing Attenuation Correction Factors from CT Scans 357
2. Possible Sources of Artifacts for CT-Based Attenuation Correction 358
3. Scatter Correction 360
F. HYBRID PET/MRI AND SPECT/MRI 360
CHAPTER 20 Digital Image Processing in Nuclear Medicine 363
A. DIGITAL IMAGES 364
1. Basic Characteristics and Terminology 364
2. Spatial Resolution and Matrix Size 365
3. Image Display 367
4. Acquisition Modes 367
B. DIGITAL IMAGE-PROCESSING TECHNIQUES 369
1. Image Visualization 369
2. Regions and Volumes of Interest 372
3. Time-Activity Curves 373
4. Image Smoothing 373
5. Edge Detection and Segmentation 373
6. Co-Registration of Images 375
C. PROCESSING ENVIRONMENT 376
CHAPTER 21 Tracer Kinetic Modeling 379
A. BASIC CONCEPTS 379
B. TRACERS AND COMPARTMENTS 380
1. Definition of a Tracer 380
2. Definition of a Compartment 382
3. Distribution Volume and Partition Coefficient 382
4. Flux 383
5. Rate Constants 384
6. Steady State 385
C. TRACER DELIVERY AND TRANSPORT 386
1. Blood Flow, Extraction, and Clearance 386
2. Transport 389
D. FORMULATION OF A COMPARTMENTAL MODEL 390
E. EXAMPLES OF DYNAMIC IMAGING AND TRACER KINETIC
MODELS 392
1. Cardiac Function and Ejection Fraction 392
2. Blood Flow Models 392
3. Blood Flow: Trapped Radiotracers 393
4. Blood Flow: Clearance Techniques 394
5. Enzyme Kinetics: Glucose Metabolism 396
6. Receptor Ligand
CHAPTER 22 Internal Radiation Dosimetry 407
A. RADIATION DOSE AND EQUIVALENT DOSE: QUANTITIES AND
UNITS 407
B. CALCULATION OF RADIATION DOSE (MIRD METHOD) 408
1. Basic Procedure and Some Practical Problems 408
2. Cumulated Activity, A
~ 409
3. Equilibrium Absorbed Dose Constant, Δ 412
4. Absorbed Fraction, ϕ 413
5. Specific Absorbed Fraction, Φ, and the Dose Reciprocity Theorem 414
6. Mean Dose per Cumulated Activity, S 415
7. Whole-Body Dose and Effective Dose 417
8. Limitations of the MIRD Method 424
CHAPTER 23 Radiation Safety and Health Physics 427
A. QUANTITIES AND UNITS 428
1. Dose-Modifying Factors 428
2. Exposure and Air Kerma 428
B. REGULATIONS PERTAINING TO THE USE OF RADIONUCLIDES 431
1. Nuclear Regulatory Commission Licensing and Regulations 431
2. Restricted and Unrestricted Areas 431
3. Dose Limits 431
4. Concentrations for Airborne Radioactivity in Restricted Areas 432
5.╇ Environmental Concentrations and Concentrations for Sewage
Disposal 432
6. Record-Keeping Requirements 432
7. Recommendations of Advisory Bodies 433
C. SAFE HANDLING OF RADIOACTIVE MATERIALS 433
1. The ALARA Concept 433
2. Reduction of Radiation Doses from External Sources 434
3. Reduction of Radiation Doses from Internal Sources 437
4. Laboratory Design 438
5. Procedures for Handling Spills 438
D. DISPOSAL OF RADIOACTIVE WASTE 439
E. RADIATION MONITORING 439
1. Survey Meters and Laboratory Monitors 439
2. Personnel Dosimeters 440
3. Wipe Testing 441
APPENDIX A Unit Conversions 443
APPENDIX B Properties of the Naturally Occurring Elements 445
APPENDIX C Decay Characteristics of Some Medically Important
Radionuclides 449
APPENDIX D Mass Attenuation Coefficients for Water, NaI(Tl)
Bi4Ge3O12, Cd0.8Zn0.2Te, and Lead 476
APPENDIX E Effective Dose Equivalent (mSv/MBq) and Radiation
Absorbed Dose Estimates (mGy/MBq) to Adult Subjects
from Selected Internally Administered
Radiopharmaceuticals 478
APPENDIX F The Fourier Transform 481
A. THE FOURIER TRANSFORM: WHAT IT REPRESENTS 481
B. CALCULATING FOURIER TRANSFORMS 481
C. SOME PROPERTIES OF FOURIER TRANSFORMS 483
D. SOME EXAMPLES OF FOURIER TRANSFORMS 486
APPENDIX G Convolution 489 |
Côte titre : |
Fs/12085-12086,Fs/12619,Fs/14111-14112 |
Physics in nuclear medicine [texte imprimé] / Simon R. Cherry ; James A. Sorenson ; Michael E. Phelps . - 4th ed. . - Philadelphia, Penn. : Saunders/Elsevier, 2012 . - 1 vol. (523 p.) : ill. (chiefly col.) ; 27 cm. ISBN : 978-1-4160-5198-5 978-1-4160-5198-5 Langues : Anglais ( eng)
Catégories : |
Physique Spécialités multiples
|
Mots-clés : |
Physique : médecine nucléaire
Médecine nucléaire |
Index. décimale : |
610.1 - Médecine et santé |
Résumé : |
Physique en médecine nucléaire - par les Drs. Simon R. Cherry, James A. Sorenson et Michael E. Phelps - fournit des conseils actuels et complets sur la physique sous-jacente à la médecine nucléaire moderne et l'imagerie à l'aide de traceurs marqués radioactivement. Cette quatrième édition révisée et mise à jour présente une nouvelle présentation en couleur, ainsi que les dernières informations sur l'instrumentation et la technologie. Restez au courant des développements cruciaux de l'imagerie hybride (PET / CT et SPECT / CT) et de l'imagerie des petits animaux et profitez de la nouvelle section sur la modélisation cinétique du traceur dans l'imagerie neuroréceptrice. De plus, vous pouvez renforcer votre compréhension avec les animations graphiques en ligne à www.expertconsult.com, ainsi que le texte entièrement consultable et les outils de calcul |
Note de contenu : |
Sommaire
What is Nuclear Medicine?
CHAPTER 1 What Is Nuclear Medicine? 1
A.FUNDAMENTAL CONCEPTS 1
B.THE POWER OF NUCLEAR MEDICINE 1
C. HISTORICAL OVERVIEW 2
D. CURRENT PRACTICE OF NUCLEAR MEDICINE 4
E. THE ROLE OF PHYSICS IN NUCLEAR MEDICINE 6
CHAPTER 2 Basic Atomic and Nuclear Physics 7
A. QUANTITIES AND UNITS 7
1. Types of Quantities and Units 7
2. Mass and Energy Units 7
B. RADIATION 8
C. ATOMS 9
1. Composition and Structure 9
2. Electron Binding Energies and Energy Levels 9
3. Atomic Emissions 10
D. THE NUCLEUS 13
1. Composition 13
2. Terminology and Notation 13
3. Nuclear Families 14
4. Forces and Energy Levels within the Nucleus 14
5. Nuclear Emissions 15
6. Nuclear Binding Energy 15
7. Characteristics of Stable Nuclei 16
CHAPTER 3 Modes of Radioactive Decay 19
A. GENERAL CONCEPTS 19
B. CHEMISTRY AND RADIOACTIVITY 19
C. DECAY BY β−
EMISSION 20
D. DECAY BY (β−
, γ ) EMISSION 21
E. ISOMERIC TRANSITION AND INTERNAL CONVERSION 22
F. ELECTRON CAPTURE AND (EC, γ ) DECAY 24
G. POSITRON (β+
) AND (β+
, γ ) DECAY 25
H. COMPETITIVE β+
AND EC DECAY 26
I. DECAY BY α EMISSION AND BY NUCLEAR FISSION 26
J. DECAY MODES AND THE LINE OF STABILITY 28
K. SOURCES OF INFORMATION ON RADIONUCLIDES 28
CHAPTER 4 Decay of Radioactivity 31
A. ACTIVITY 31
1. The Decay Constant 31
2. Definition and Units of Activity 31
B. EXPONENTIAL DECAY 32
1. The Decay Factor 32
2. Half-Life 33
3. Average Lifetime 34
C. METHODS FOR DETERMINING DECAY FACTORS 34
1. Tables of Decay Factors 34
2. Pocket Calculators 35
3. Universal Decay Curve 35
D. IMAGE-FRAME DECAY CORRECTIONS 35
E. SPECIFIC ACTIVITY 37
F. DECAY OF A MIXED RADIONUCLIDE SAMPLE 38
G. PARENT-DAUGHTER DECAY 39
1. The Bateman Equations 39
2. Secular Equilibrium 40
3. Transient Equilibrium 41
4. No Equilibrium 41
CHAPTER 5 Radionuclide and Radiopharmaceutical Production 43
A. REACTOR-PRODUCED RADIONUCLIDES 43
1. Reactor Principles 43
2. Fission Fragments 44
3. Neutron Activation 45
B. ACCELERATOR-PRODUCED RADIONUCLIDES 47
1. Charged-Particle Accelerators 47
2. Cyclotron Principles 47
3. Cyclotron-Produced Radionuclides 49
C. RADIONUCLIDE GENERATORS 50
D. EQUATIONS FOR RADIONUCLIDE PRODUCTION 53
1. Activation Cross-Sections 53
2. Activation Rates 54
3. Buildup and Decay of Activity 56
E. RADIONUCLIDES FOR NUCLEAR MEDICINE 57
1. General Considerations 57
2. Specific Considerations 57
F. RADIOPHARMACEUTICALS FOR CLINICAL APPLICATIONS 59
1. General Considerations 59
2. Labeling Strategies 59
3. Technetium-99m-Labeled Radiopharmaceuticals 60
4. Radiopharmaceuticals Labeled with Positron Emitters 60
5. Radiopharmaceuticals for Therapy Applications 61
6. Radiopharmaceuticals in Clinical Nuclear Medicine 61
CHAPTER 6 Interaction of Radiation with Matter 63
A. INTERACTIONS OF CHARGED PARTICLES WITH MATTER 63
1. Charged-Particle Interaction Mechanisms 63
2. Collisional Versus Radiation Losses 64
3. Charged-Particle Tracks 66
4. Deposition of Energy Along a Charged-Particle Track 67
5. The Cerenkov Effect 68
B. CHARGED-PARTICLE RANGES 70
1. Alpha Particles 70
2. Beta Particles and Electrons 71
C. PASSAGE OF HIGH-ENERGY PHOTONS THROUGH MATTER 74
1. Photon Interaction Mechanisms 74
2. The Photoelectric Effect 74
3. Compton Scattering 74
4. Pair Production 76
5. Coherent (Rayleigh) Scattering 77
6. Deposition of Photon Energy in Matter 77
D. ATTENUATION OF PHOTON BEAMS 78
1. Attenuation Coefficients 78
2. Thick Absorbers, Narrow-Beam Geometry 79
3. Thick Absorbers, Broad-Beam Geometry 83
4. Polyenergetic Sources 84
CHAPTER 7 Radiation Detectors 87
A. GAS-FILLED DETECTORS 87
1. Basic Principles 87
2. Ionization Chambers 87
3. Proportional Counters 91
4. Geiger-Müller Counters 92
B. SEMICONDUCTOR DETECTORS 96
C. SCINTILLATION DETECTORS 97
1. Basic Principles 97
2. Photomultiplier Tubes 98
3. Photodiodes 99
4. Inorganic Scintillators 100
5. Considerations in Choosing an Inorganic Scintillator 103
6. Organic Scintillators 104
CHAPTER 8 Electronic Instrumentation for Radiation Detection
Systems 107
A. PREAMPLIFIERS 107
B. AMPLIFIERS 110
1. Amplification and Pulse-Shaping Functions 110
2. Resistor-Capacitor Shaping 111
3. Baseline Shift and Pulse Pile-Up 112
C. PULSE-HEIGHT ANALYZERS 113
1. Basic Functions 113
2. Single-Channel Analyzers 113
3. Timing Methods 114
4. Multichannel Analyzers 116
D. TIME-TO-AMPLITUDE CONVERTERS 118
E. DIGITAL COUNTERS AND RATE METERS 119
1. Scalers, Timers, and Counters 119
2. Analog Rate Meters 120
F. COINCIDENCE UNITS 121
G. HIGH-VOLTAGE POWER SUPPLIES 122
H. NUCLEAR INSTRUMENT MODULES 122
I. OSCILLOSCOPES 123
1. Cathode Ray Tube 123
2. Analog Oscilloscope 124
3. Digital Oscilloscope 1
CHAPTER 9 Nuclear Counting Statistics 125
A. TYPES OF MEASUREMENT ERROR 125
B. NUCLEAR COUNTING STATISTICS 126
1. The Poisson Distribution 126
2. The Standard Deviation 128
3. The Gaussian Distribution 128
C. PROPAGATION OF ERRORS 128
1. Sums and Differences 129
2. Constant Multipliers 129
3. Products and Ratios 129
4. More Complicated Combinations 129
D. APPLICATIONS OF STATISTICAL ANALYSIS 130
1. Effects of Averaging 130
2. Counting Rates 130
3. Significance of Differences Between Counting Measurements 130
4. Effects of Background 131
5. Minimum Detectable Activity 131
6. Comparing Counting Systems 132
7. Estimating Required Counting Times 132
8. Optimal Division of Counting Times 133
E. STATISTICAL TESTS 133
1. The χ2
Test 133
2. The t-Test 135
3. Treatment of “Outliers” 138
4CHAPTER 10 Pulse-Height Spectrometry 141
A. BASIC PRINCIPLES 141
B. SPECTROMETRY WITH NaI(Tl) 142
1. The Ideal Pulse-Height Spectrum 142
2. The Actual Spectrum 143
3. Effects of Detector Size 145
4. Effects of Counting Rate 146
5. General Effects of γ-Ray Energy 147
6. Energy Linearity 147
7. Energy Resolution 148
C. SPECTROMETRY WITH OTHER DETECTORS 151
1. Semiconductor Detector Spectrometers 151
2. Liquid Scintillation Spectrometry 152
3. Proportional Counter Spectrometers 153
Linear Regression 139
CHAPTER 10 Pulse-Height Spectrometry 141
A. BASIC PRINCIPLES 141
B. SPECTROMETRY WITH NaI(Tl) 142
1. The Ideal Pulse-Height Spectrum 142
2. The Actual Spectrum 143
3. Effects of Detector Size 145
4. Effects of Counting Rate 146
5. General Effects of γ-Ray Energy 147
6. Energy Linearity 147
7. Energy Resolution 148
C. SPECTROMETRY WITH OTHER DETECTORS 151
1. Semiconductor Detector Spectrometers 151
2. Liquid Scintillation Spectrometry 152
3. Proportional Counter Spectrometers 153
CHAPTER 11 Problems in Radiation Detection and Measurement 155
A. DETECTION EFFICIENCY 155
1. Components of Detection Efficiency 155
2. Geometric Efficiency 156
3. Intrinsic Efficiency 158
4. Energy-Selective Counting 159
5. Some Complicating Factors 160
6. Calibration Sources 164
B. PROBLEMS IN THE DETECTION AND MEASUREMENT
OF β PARTICLES 166
C. DEAD TIME 168
1. Causes of Dead Time 168
2. Mathematical Models 168
3. Window Fraction Effects 170
4. Dead Time Correction Methods 170
D. QUALITY ASSURANCE FOR RADIATION MEASUREMENT SYSTEMS 171
CHAPTER 12 Counting Systems 173
A. NaI(Tl) WELL COUNTER 173
1. Detector Characteristics 173
2. Detection Efficiency 174
3. Sample Volume Effects 175
4. Assay of Absolute Activity 177
5. Shielding and Background 177
6. Energy Calibration 178
7. Multiple Radionuclide Source Counting 178
8. Dead Time 179
9. Automated Multiple-Sample Systems 179
10. Applications 182
B. COUNTING WITH CONVENTIONAL NaI(Tl) DETECTORS 182
1. Large Sample Volumes 182
2. Liquid and Gas Flow Counting 182
C. LIQUID SCINTILLATION COUNTERS 182
1. General Characteristics 182
2. Pulse-Height Spectrometry 184
3. Counting Vials 184
4. Energy and Efficiency Calibration 185
5. Quench Corrections 185
6. Sample Preparation Techniques 187
7. Cerenkov Counting 188
8. Liquid and Gas Flow Counting 188
9. Automated Multiple-Sample LS Counters 188
10. Applications 189
D. GAS-FILLED DETECTORS 189
1. Dose Calibrators 189
2. Gas Flow Counters 190
E. SEMICONDUCTOR DETECTOR SYSTEMS 190
1. System Components 190
2. Applications 191
F. IN VIVO COUNTING SYSTEMS 192
1. NaI(Tl) Probe Systems 192
2. Miniature γ-Ray and β Probes for Surgical Use 192
3. Whole-Body Counters 194
CHAPTER 13 The Gamma Camera: Basic Principles 195
A. GENERAL CONCEPTS OF RADIONUCLIDE IMAGING 195
B. BASIC PRINCIPLES OF THE GAMMA CAMERA 196
1. System Components 196
2. Detector System and Electronics 197
3. Collimators 201
4. Event Detection in a Gamma Camera 204
C. TYPES OF GAMMA CAMERAS AND THEIR CLINICAL USES 206
CHAPTER 14 The Gamma Camera: Performance Characteristics 209
A. BASIC PERFORMANCE CHARACTERISTICS 209
1. Intrinsic Spatial Resolution 209
2. Detection Efficiency 211
3. Energy Resolution 211
4. Performance at High Counting Rates 213
B. DETECTOR LIMITATIONS: NONUNIFORMITY AND NONLINEARITY 216
1. Image Nonlinearity 216
2. Image Nonuniformity 217
3. Nonuniformity Correction Techniques 217
4. Gamma Camera Tuning 219
C. DESIGN AND PERFORMANCE CHARACTERISTICS OF PARALLEL-HOLE
COLLIMATORS 220
1. Basic Limitations in Collimator Performance 220
2. Septal Thickness 220
3. Geometry of Collimator Holes 222
4. System Resolution 225
D. PERFORMANCE CHARACTERISTICS OF CONVERGING, DIVERGING,
AND PINHOLE COLLIMATORS 225
E. MEASUREMENTS OF GAMMA CAMERA PERFORMANCE 228
1. Intrinsic Resolution 229
2. System Resolution 229
3. Spatial Linearity 229
4. Uniformity 230
5. Counting Rate Performance 230
6. Energy Resolution 231
7. System Sensitivity 231
CHAPTER 15 Image Quality in Nuclear Medicine 233
A. BASIC METHODS FOR CHARACTERIZING AND EVALUATING
IMAGE QUALITY 233
B. SPATIAL RESOLUTION 233
1. Factors Affecting Spatial Resolution 233
2. Methods for Evaluating Spatial Resolution 234
C. CONTRAST 239
D. NOISE 243
1. Types of Image Noise 243
2. Random Noise and Contrast-to-Noise Ratio 243
E. OBSERVER PERFORMANCE STUDIES 247
1. Contrast-Detail Studies 247
2. Receiver Operating Characteristic Studies 248
CHAPTER 16 Tomographic Reconstruction in Nuclear Medicine 253
A. GENERAL CONCEPTS, NOTATION, AND TERMINOLOGY 254
B. BACKPROJECTION AND FOURIER-BASED TECHNIQUES 256
1. Simple Backprojection 256
2. Direct Fourier Transform Reconstruction 258
3. Filtered Backprojection 260
4. Multislice Imaging 262
C. IMAGE QUALITY IN FOURIER TRANSFORM AND FILTERED
BACKPROJECTION TECHNIQUES 263
1. Effects of Sampling on Image Quality 263
2. Sampling Coverage and Consistency Requirements 266
3. Noise Propagation, Signal-to-Noise Ratio, and Contrast-to-Noise
Ratio 266
D. ITERATIVE RECONSTRUCTION ALGORITHMS 270
1. General Concepts of Iterative Reconstruction 270
2. Expectation-Maximization Reconstruction 272
E. RECONSTRUCTION OF FAN-BEAM, CONE-BEAM AND PINHOLE SPECT
DATA, AND 3-D PET DATA 273
1. Reconstruction of Fan-Beam Data 273
2. Reconstruction of Cone-Beam and Pinhole Data 274
3. 3-D PET Reconstruction 275
CHAPTER 17 Single Photon Emission Computed Tomography 279
A. SPECT SYSTEMS 279
1. Gamma Camera SPECT Systems 279
2. SPECT Systems for Brain Imaging 280
3. SPECT Systems for Cardiac Imaging 281
4. SPECT Systems for Small-Animal Imaging 283
B. PRACTICAL IMPLEMENTATION OF SPECT 285
1. Attenuation Effects and Conjugate Counting 287
2. Attenuation Correction 293
3. Transmission Scans and Attenuation Maps 294
4. Scatter Correction 296
5. Partial-Volume Effects 299
C. PERFORMANCE CHARACTERISTICS OF SPECT SYSTEMS 299
1. Spatial Resolution 301
2. Volume Sensitivity 301
3. Other Measurements of Performance 302
4. Quality Assurance in SPECT 302
D. APPLICATIONS OF SPECT 303
CHAPTER 18 Positron Emission Tomography 307
A. BASIC PRINCIPLES OF PET IMAGING 307
1. Annihilation Coincidence Detection 307
2. Time-of-Flight PET 309
3. Spatial Resolution: Detectors 310
4. Spatial Resolution: Positron Physics 312
5. Spatial Resolution: Depth-of-Interaction Effect 316
6. Spatial Resolution: Sampling 318
7. Spatial Resolution: Reconstruction Filters 319
8. Sensitivity 319
9. Event Types in Annihilation Coincidence Detection 32
CHAPTER 18 Positron Emission Tomography 307
A. BASIC PRINCIPLES OF PET IMAGING 307
1. Annihilation Coincidence Detection 307
2. Time-of-Flight PET 309
3. Spatial Resolution: Detectors 310
4. Spatial Resolution: Positron Physics 312
5. Spatial Resolution: Depth-of-Interaction Effect 316
6. Spatial Resolution: Sampling 318
7. Spatial Resolution: Reconstruction Filters 319
8. Sensitivity 319
9. Event Types in Annihilation Coincidence Detection 322
B. PET DETECTOR AND SCANNER DESIGNS 324
1. Block Detectors 324
2. Modified Block Detectors 325
3. Whole-Body PET Systems 326
4. Specialized PET Scanners 330
5. Small-Animal PET Scanners 331
C. DATA ACQUISITION FOR PET 332
1. Two-Dimensional Data Acquisition 332
2. Three-Dimensional Data Acquisition 332
3. Data Acquisition for Dynamic Studies and Whole-Body Scans 335
D. DATA CORRECTIONS AND QUANTITATIVE ASPECTS OF PET 335
1. Normalization 335
2. Correction for Random Coincidences 336
3. Correction for Scattered Radiation 337
4. Attenuation Correction 338
5. Dead Time Correction 339
6. Absolute Quantification of PET Images 339
E. PERFORMANCE CHARACTERISTICS OF PET SYSTEMS 340
F. CLINICAL AND RESEARCH APPLICATIONS OF PET 341
CHAPTER 19 Hybrid Imaging: SPECT/CT and PET/CT 345
A. MOTIVATION FOR HYBRID SYSTEMS 345
B. X-RAY COMPUTED TOMOGRAPHY 346
1. X-ray Tube 346
2. X-ray Detectors 347
3. X-ray CT Scanner 348
4. CT Reconstruction 348
C. SPECT/CT SYSTEMS 350
1. Clinical SPECT/CT Scanners 350
2. Small-Animal SPECT/CT Scanners 352
D. PET/CT 354
1. Clinical PET/CT Scanners 354
2. Small-Animal PET/CT Scanners 356
E. ATTENUATION AND SCATTER CORRECTION USING CT 356
1. Computing Attenuation Correction Factors from CT Scans 357
2. Possible Sources of Artifacts for CT-Based Attenuation Correction 358
3. Scatter Correction 360
F. HYBRID PET/MRI AND SPECT/MRI 360
CHAPTER 20 Digital Image Processing in Nuclear Medicine 363
A. DIGITAL IMAGES 364
1. Basic Characteristics and Terminology 364
2. Spatial Resolution and Matrix Size 365
3. Image Display 367
4. Acquisition Modes 367
B. DIGITAL IMAGE-PROCESSING TECHNIQUES 369
1. Image Visualization 369
2. Regions and Volumes of Interest 372
3. Time-Activity Curves 373
4. Image Smoothing 373
5. Edge Detection and Segmentation 373
6. Co-Registration of Images 375
C. PROCESSING ENVIRONMENT 376
CHAPTER 21 Tracer Kinetic Modeling 379
A. BASIC CONCEPTS 379
B. TRACERS AND COMPARTMENTS 380
1. Definition of a Tracer 380
2. Definition of a Compartment 382
3. Distribution Volume and Partition Coefficient 382
4. Flux 383
5. Rate Constants 384
6. Steady State 385
C. TRACER DELIVERY AND TRANSPORT 386
1. Blood Flow, Extraction, and Clearance 386
2. Transport 389
D. FORMULATION OF A COMPARTMENTAL MODEL 390
E. EXAMPLES OF DYNAMIC IMAGING AND TRACER KINETIC
MODELS 392
1. Cardiac Function and Ejection Fraction 392
2. Blood Flow Models 392
3. Blood Flow: Trapped Radiotracers 393
4. Blood Flow: Clearance Techniques 394
5. Enzyme Kinetics: Glucose Metabolism 396
6. Receptor Ligand
CHAPTER 22 Internal Radiation Dosimetry 407
A. RADIATION DOSE AND EQUIVALENT DOSE: QUANTITIES AND
UNITS 407
B. CALCULATION OF RADIATION DOSE (MIRD METHOD) 408
1. Basic Procedure and Some Practical Problems 408
2. Cumulated Activity, A
~ 409
3. Equilibrium Absorbed Dose Constant, Δ 412
4. Absorbed Fraction, ϕ 413
5. Specific Absorbed Fraction, Φ, and the Dose Reciprocity Theorem 414
6. Mean Dose per Cumulated Activity, S 415
7. Whole-Body Dose and Effective Dose 417
8. Limitations of the MIRD Method 424
CHAPTER 23 Radiation Safety and Health Physics 427
A. QUANTITIES AND UNITS 428
1. Dose-Modifying Factors 428
2. Exposure and Air Kerma 428
B. REGULATIONS PERTAINING TO THE USE OF RADIONUCLIDES 431
1. Nuclear Regulatory Commission Licensing and Regulations 431
2. Restricted and Unrestricted Areas 431
3. Dose Limits 431
4. Concentrations for Airborne Radioactivity in Restricted Areas 432
5.╇ Environmental Concentrations and Concentrations for Sewage
Disposal 432
6. Record-Keeping Requirements 432
7. Recommendations of Advisory Bodies 433
C. SAFE HANDLING OF RADIOACTIVE MATERIALS 433
1. The ALARA Concept 433
2. Reduction of Radiation Doses from External Sources 434
3. Reduction of Radiation Doses from Internal Sources 437
4. Laboratory Design 438
5. Procedures for Handling Spills 438
D. DISPOSAL OF RADIOACTIVE WASTE 439
E. RADIATION MONITORING 439
1. Survey Meters and Laboratory Monitors 439
2. Personnel Dosimeters 440
3. Wipe Testing 441
APPENDIX A Unit Conversions 443
APPENDIX B Properties of the Naturally Occurring Elements 445
APPENDIX C Decay Characteristics of Some Medically Important
Radionuclides 449
APPENDIX D Mass Attenuation Coefficients for Water, NaI(Tl)
Bi4Ge3O12, Cd0.8Zn0.2Te, and Lead 476
APPENDIX E Effective Dose Equivalent (mSv/MBq) and Radiation
Absorbed Dose Estimates (mGy/MBq) to Adult Subjects
from Selected Internally Administered
Radiopharmaceuticals 478
APPENDIX F The Fourier Transform 481
A. THE FOURIER TRANSFORM: WHAT IT REPRESENTS 481
B. CALCULATING FOURIER TRANSFORMS 481
C. SOME PROPERTIES OF FOURIER TRANSFORMS 483
D. SOME EXAMPLES OF FOURIER TRANSFORMS 486
APPENDIX G Convolution 489 |
Côte titre : |
Fs/12085-12086,Fs/12619,Fs/14111-14112 |
|  |