Titre : |
Quantum mechanics : Foundations and applications |
Type de document : |
texte imprimé |
Auteurs : |
Arno Bohm ; M. Loewe |
Mention d'édition : |
3e éd. |
Editeur : |
New York : Springer-Verlag |
Année de publication : |
1993 |
Importance : |
1 vol (688 p.) |
Présentation : |
ill. |
Format : |
24 cm |
ISBN/ISSN/EAN : |
978-3-540-97944-9 |
Note générale : |
"Springer study edition" on back cover of 2001 paperback printing |
Catégories : |
Physique
|
Mots-clés : |
Théorie quantique |
Index. décimale : |
530.12 Mécanique quantique |
Résumé : |
Cette édition diffère de la deuxième par l'addition de près de 100 pages consacrées à la phase quantique (ou géométrique, ou Berry), un sujet qui n'existait pas lors de la rédaction de ce livre. Les changements dans le reste du livre consistent en des corrections d'un petit nombre de fautes d'impression. Alors qu'il peut sembler que l'ajout de deux chapitres sur la phase quantique surestime un sujet actuellement à la mode, ils complètent réellement le développement de la théorie quantique comme indiqué dans ce livre. Nous commençons avec des modèles simples, les synthétisant en "molécules" compliquées. Avec les nouveaux chapitres, nous terminons par des «molécules» compliquées, en les divisant en parties plus simples. Ce processus de division d'un système complexe en parties donne tout naturellement naissance à une théorie de jauge dont la phase géométrique est une manifestation - avec des conséquences non seulement théoriques, mais observables expérimentalement. Pour cette raison, la phase géométrique n'est pas une simple mode, mais une découverte qui conservera son importance pour toujours et qui doit être discutée dans les manuels de mécanique quantique. Je voudrais remercier Mark Loewe pour son aide et ses conseils pour l'écriture et la nouvelle partie du livre. En outre, je voudrais exprimer ma gratitude à J. Anandan, M. Berry et C.A. Mead, qui a lu des parties ou tout le nouveau matériel et ont fourni de précieux conseils. |
Note de contenu : |
Sommaire
Preface to the Third Edition vii
Preface to the Second Edition ix
Acknowledgments xiii
CHAPTER I
Mathematical Preliminaries 1
1.1 The Mathematical Language of Quantum Mechanics 1
1.2 Linear Spaces, Scalar Product 2
1.3 Linear Operators 5
1.4 Basis Systems and Eigenvector Decomposition 8
1.5 Realizations of Operators and of Linear Spaces 18
1.6 Hermite Polynomials as an Example of Orthonormal Basis Functions 28
Appendix to Section 1.6 31
1.7 Continuous Functionals 33
1.8 How the Mathematical Quantities Will Be Used 39
Problems 39
CHAPTER II
Foundations of Quantum Mechanics—The Harmonic Oscillator 43
II. 1 Introduction 43
11.2 The First Postulate of Quantum Mechanics 44
11.3 Algebra of the Harmonic Oscillator 50
11.4 The Relation Between Experimental Data and Quantum-Mechanical
Observables 54
11.5 The Basic Assumptions Applied to the Harmonic Oscillator, and
Some Historical Remarks 74
11.6 Some General Consequences of the Basic Assumptions of Quantum
Mechanics 81
11.7 Eigenvectors of Position and Momentum Operators; the Wave
Functions of the Harmonic Oscillator 84
xv
xvi Contents
11.8 Postulates II and III for Observables with Continuous Spectra 94
11.9 Position and Momentum Measurements—Particles and Waves 101
Problems 112
CHAPTER III
Energy Spectra of Some Molecules 117
ULI Transitions Between Energy Levels of Vibrating Molecules—
The Limitations of the Oscillator Model 117
111.2 The Rigid Rotator 128
111.3 The Algebra of Angular Momentum 132
111.4 Rotation Spectra 138
111.5 Combination of Quantum Physical Systems—The Vibrating Rotator 146
Problems 155
CHAPTER IV
Complete Systems of Commuting Observables 159
CHAPTER V
Addition of Angular Momenta—The Wigner-Eckart Theorem 164
V.l Introduction—The Elementary Rotator 164
V.2 Combination of Elementary Rotators 165
V.3 Tensor Operators and the Wigner-Eckart Theorem 176
Appendix to Section V.3 181
V.4 Parity 192
Problem 204
CHAPTER VI
Hydrogen Atom—The Quantum-Mechanical Kepler Problem 205
VI. 1 Introduction 20
Contents xvii
CHAPTER IX
Electron Spin 253
IX. 1 Introduction 253
IX.2 The Fine Structure—Qualitative Considerations 255
IX.3 Fine-Structure Interaction 261
IX.4 Fine Structure of Atomic Spectra 268
IX.5 Selection Rules 270
IX.6 Remarks on the State of an Electron in Atoms 271
Problems 272
CHAPTER X
Indistinguishable Particles 274
X.l Introduction 274
Problem 281
CHAPTER XI
Two-Electron Systems—The Helium Atom 282
XI. 1 The Two Antisymmetric Subspaces of the Helium Atom 282
XI.2 Discrete Energy Levels of Helium 287
XI.3 Selection Rules and Singlet-Triplet Mixing for the Helium Atom 297
XI.4 Doubly Excited States of Helium
30 3
Problems
30 9
CHAPTER XII
Time Evolution 310
XII.1 Time Evolution
31 °
XII.A Mathematical Appendix: Definitions and Properties of Operators
that Depend upon a Parameter 324
Problems 326
CHAPTER XIII
Some Fundamental Properties of Quantum Mechanics 328
XIII. 1 Change of the State by the Dynamical Law and by the
Measuring Process—The Stern-Gerlach Experiment 328
Appendix to Section XIII. 1 340
ХШ.2 Spin Correlations in a Singlet State 342
XIII.3 Bell's Inequalities, Hidden Variables, and the Einstein-PodolskyRosen
Paradox 347
Problems 354
CHAPTER XIV
Transitions in Quantum Physical Systems—Cross Section 356
XIV. 1 Introduction 356
XIV.2 Transition Probabilities and Transition Rates 358
XIV.3 Cross Sections 362
XIV.4 The Relation of Cross Sections to the Fundamental Physical
Observables 365
XIV.5 Derivation of Cross-Section Formulas for the Scattering of
a Beam off a Fixed Target 368
Problems 384
xviii Contents
CHAPTER XV
Formal Scattering Theory and Other Theoretical Considerations 387
XV. 1 The Lippman-Schwinger Equation 387
XV.2 In-States and Out-States 391
XV. 3 The S-Operator and the Meiler Wave Operators 399
XV.A Appendix 407
CHAPTER XVI
Elastic and Inelastic Scattering for Spherically Symmetric
Interactions
XVI. 1 Partial-Wave Expansion
XVI.2 Unitarity and Phase Shifts
XVI. 3 Argand Diagrams
Problems
409
409
417
422
424
CHAPTER XVII
Free and Exact Radial Wave Functions 425
XVII. 1 Introduction 425
XVII.2 The Radial Wave Equation 426
XVII.3 The Free Radial Wave Function 430
XVII.4 The Exact Radial Wave Function 432
XVII.5 Poles and Bound States 439
XVII.6 Survey of Some General Properties of Scattering Amplitudes and
Phase Shifts 441
XVII.A Mathematical Appendix on Analytic Functions 444
Problems 450
CHAPTER XVIII
Resonance Phenomena 452
XVIII. 1 Introduction 452
XVIII.2 Time Delay and Phase Shifts 457
XVIII.3 Causality Conditions 464
XVIII.4 Causality and Analyticity 467
XVIII.5 Brief Description of the Analyticity Properties of the S-Matrix 471
XVIII.6 Resonance Scattering—Breit-Wigner Formula for Elastic Scattering 476
XVIII.7 The Physical Effect of a Virtual State 487
XVIII.8 Argand Diagrams for Elastic Resonances and Phase-Shift Analysis 489
XVIII.9 Comparison with the Observed Cross Section: The Effect of
Background and Finite Energy Resolution 493
Problems 503
CHAPTER XIX
Time Reversal 505
XIX. 1 Space-Inversion Invariance and the Properties of the S-Matrix 505
XIX.2 Time Reversal 507
Appendix to Section XIX.2 511
XIX.3 Time-Reversal Invariance and the Properties of the S-Matrix 512
Problems 516
Contents XIX
CHAPTER XX
Resonances in Multichannel Systems 517
XX. 1 Introduction 517
XX.2 Single and Double Resonances 518
XX.3 Argand Diagrams for Inelastic Resonances 532
CHAPTER XXI
The Decay of Unstable Physical Systems 537
XXI. 1 Introduction 537
XXI.2 Lifetime and Decay Rate 539
XXI.3 The Description of a Decaying State and the Exponential Decay Law 542
XXI.4 Gamow Vectors and Their Association to the Resonance Poles of the
S-Matrix 549
XXI.5 The Golden Rule 563
XXI.6 Partial Decay Rates 567
Problems 569
CHAPTER XXII
Quantal Phase Factors and Their Consequences 571
XXII. 1 Introduction 571
XXII.2 A Quantum Physical System in a Slowly Changing
Environment 573
XXII.3 A Spinning Quantum System in a Slowly Changing External
Magnetic Field—The Adiabatic Approximation 587
XXII.4 A Spinning Quantum System in a Precessing External Magnetic
Field—The General Cyclic Evolution 598
Problems 614
CHAPTER XXIII
A Quantum Physical System in a Quantum Environment—The Gauge
Theory of Molecular Physics 617
XXIII. 1 Introduction 617
XXIII.2 The Hamiltonian of the Diatomic Molecule 618
XXIII.3 The Born-Oppenheimer Method 623
XXIII.4 Gauge Theories 631
XXIII.5 The Gauge Theory of Molecular Physics 636
XXIII.6 The Electronic States of Diatomic Molecules 643
XXIII.7 The Monopole of the Diatomic Molecule 645
Problems 658
Epilogue 661
Bibliography 664
Index 669 |
Côte titre : |
Fs/0233-0234 |
Quantum mechanics : Foundations and applications [texte imprimé] / Arno Bohm ; M. Loewe . - 3e éd. . - New York : Springer-Verlag, 1993 . - 1 vol (688 p.) : ill. ; 24 cm. ISBN : 978-3-540-97944-9 "Springer study edition" on back cover of 2001 paperback printing
Catégories : |
Physique
|
Mots-clés : |
Théorie quantique |
Index. décimale : |
530.12 Mécanique quantique |
Résumé : |
Cette édition diffère de la deuxième par l'addition de près de 100 pages consacrées à la phase quantique (ou géométrique, ou Berry), un sujet qui n'existait pas lors de la rédaction de ce livre. Les changements dans le reste du livre consistent en des corrections d'un petit nombre de fautes d'impression. Alors qu'il peut sembler que l'ajout de deux chapitres sur la phase quantique surestime un sujet actuellement à la mode, ils complètent réellement le développement de la théorie quantique comme indiqué dans ce livre. Nous commençons avec des modèles simples, les synthétisant en "molécules" compliquées. Avec les nouveaux chapitres, nous terminons par des «molécules» compliquées, en les divisant en parties plus simples. Ce processus de division d'un système complexe en parties donne tout naturellement naissance à une théorie de jauge dont la phase géométrique est une manifestation - avec des conséquences non seulement théoriques, mais observables expérimentalement. Pour cette raison, la phase géométrique n'est pas une simple mode, mais une découverte qui conservera son importance pour toujours et qui doit être discutée dans les manuels de mécanique quantique. Je voudrais remercier Mark Loewe pour son aide et ses conseils pour l'écriture et la nouvelle partie du livre. En outre, je voudrais exprimer ma gratitude à J. Anandan, M. Berry et C.A. Mead, qui a lu des parties ou tout le nouveau matériel et ont fourni de précieux conseils. |
Note de contenu : |
Sommaire
Preface to the Third Edition vii
Preface to the Second Edition ix
Acknowledgments xiii
CHAPTER I
Mathematical Preliminaries 1
1.1 The Mathematical Language of Quantum Mechanics 1
1.2 Linear Spaces, Scalar Product 2
1.3 Linear Operators 5
1.4 Basis Systems and Eigenvector Decomposition 8
1.5 Realizations of Operators and of Linear Spaces 18
1.6 Hermite Polynomials as an Example of Orthonormal Basis Functions 28
Appendix to Section 1.6 31
1.7 Continuous Functionals 33
1.8 How the Mathematical Quantities Will Be Used 39
Problems 39
CHAPTER II
Foundations of Quantum Mechanics—The Harmonic Oscillator 43
II. 1 Introduction 43
11.2 The First Postulate of Quantum Mechanics 44
11.3 Algebra of the Harmonic Oscillator 50
11.4 The Relation Between Experimental Data and Quantum-Mechanical
Observables 54
11.5 The Basic Assumptions Applied to the Harmonic Oscillator, and
Some Historical Remarks 74
11.6 Some General Consequences of the Basic Assumptions of Quantum
Mechanics 81
11.7 Eigenvectors of Position and Momentum Operators; the Wave
Functions of the Harmonic Oscillator 84
xv
xvi Contents
11.8 Postulates II and III for Observables with Continuous Spectra 94
11.9 Position and Momentum Measurements—Particles and Waves 101
Problems 112
CHAPTER III
Energy Spectra of Some Molecules 117
ULI Transitions Between Energy Levels of Vibrating Molecules—
The Limitations of the Oscillator Model 117
111.2 The Rigid Rotator 128
111.3 The Algebra of Angular Momentum 132
111.4 Rotation Spectra 138
111.5 Combination of Quantum Physical Systems—The Vibrating Rotator 146
Problems 155
CHAPTER IV
Complete Systems of Commuting Observables 159
CHAPTER V
Addition of Angular Momenta—The Wigner-Eckart Theorem 164
V.l Introduction—The Elementary Rotator 164
V.2 Combination of Elementary Rotators 165
V.3 Tensor Operators and the Wigner-Eckart Theorem 176
Appendix to Section V.3 181
V.4 Parity 192
Problem 204
CHAPTER VI
Hydrogen Atom—The Quantum-Mechanical Kepler Problem 205
VI. 1 Introduction 20
Contents xvii
CHAPTER IX
Electron Spin 253
IX. 1 Introduction 253
IX.2 The Fine Structure—Qualitative Considerations 255
IX.3 Fine-Structure Interaction 261
IX.4 Fine Structure of Atomic Spectra 268
IX.5 Selection Rules 270
IX.6 Remarks on the State of an Electron in Atoms 271
Problems 272
CHAPTER X
Indistinguishable Particles 274
X.l Introduction 274
Problem 281
CHAPTER XI
Two-Electron Systems—The Helium Atom 282
XI. 1 The Two Antisymmetric Subspaces of the Helium Atom 282
XI.2 Discrete Energy Levels of Helium 287
XI.3 Selection Rules and Singlet-Triplet Mixing for the Helium Atom 297
XI.4 Doubly Excited States of Helium
30 3
Problems
30 9
CHAPTER XII
Time Evolution 310
XII.1 Time Evolution
31 °
XII.A Mathematical Appendix: Definitions and Properties of Operators
that Depend upon a Parameter 324
Problems 326
CHAPTER XIII
Some Fundamental Properties of Quantum Mechanics 328
XIII. 1 Change of the State by the Dynamical Law and by the
Measuring Process—The Stern-Gerlach Experiment 328
Appendix to Section XIII. 1 340
ХШ.2 Spin Correlations in a Singlet State 342
XIII.3 Bell's Inequalities, Hidden Variables, and the Einstein-PodolskyRosen
Paradox 347
Problems 354
CHAPTER XIV
Transitions in Quantum Physical Systems—Cross Section 356
XIV. 1 Introduction 356
XIV.2 Transition Probabilities and Transition Rates 358
XIV.3 Cross Sections 362
XIV.4 The Relation of Cross Sections to the Fundamental Physical
Observables 365
XIV.5 Derivation of Cross-Section Formulas for the Scattering of
a Beam off a Fixed Target 368
Problems 384
xviii Contents
CHAPTER XV
Formal Scattering Theory and Other Theoretical Considerations 387
XV. 1 The Lippman-Schwinger Equation 387
XV.2 In-States and Out-States 391
XV. 3 The S-Operator and the Meiler Wave Operators 399
XV.A Appendix 407
CHAPTER XVI
Elastic and Inelastic Scattering for Spherically Symmetric
Interactions
XVI. 1 Partial-Wave Expansion
XVI.2 Unitarity and Phase Shifts
XVI. 3 Argand Diagrams
Problems
409
409
417
422
424
CHAPTER XVII
Free and Exact Radial Wave Functions 425
XVII. 1 Introduction 425
XVII.2 The Radial Wave Equation 426
XVII.3 The Free Radial Wave Function 430
XVII.4 The Exact Radial Wave Function 432
XVII.5 Poles and Bound States 439
XVII.6 Survey of Some General Properties of Scattering Amplitudes and
Phase Shifts 441
XVII.A Mathematical Appendix on Analytic Functions 444
Problems 450
CHAPTER XVIII
Resonance Phenomena 452
XVIII. 1 Introduction 452
XVIII.2 Time Delay and Phase Shifts 457
XVIII.3 Causality Conditions 464
XVIII.4 Causality and Analyticity 467
XVIII.5 Brief Description of the Analyticity Properties of the S-Matrix 471
XVIII.6 Resonance Scattering—Breit-Wigner Formula for Elastic Scattering 476
XVIII.7 The Physical Effect of a Virtual State 487
XVIII.8 Argand Diagrams for Elastic Resonances and Phase-Shift Analysis 489
XVIII.9 Comparison with the Observed Cross Section: The Effect of
Background and Finite Energy Resolution 493
Problems 503
CHAPTER XIX
Time Reversal 505
XIX. 1 Space-Inversion Invariance and the Properties of the S-Matrix 505
XIX.2 Time Reversal 507
Appendix to Section XIX.2 511
XIX.3 Time-Reversal Invariance and the Properties of the S-Matrix 512
Problems 516
Contents XIX
CHAPTER XX
Resonances in Multichannel Systems 517
XX. 1 Introduction 517
XX.2 Single and Double Resonances 518
XX.3 Argand Diagrams for Inelastic Resonances 532
CHAPTER XXI
The Decay of Unstable Physical Systems 537
XXI. 1 Introduction 537
XXI.2 Lifetime and Decay Rate 539
XXI.3 The Description of a Decaying State and the Exponential Decay Law 542
XXI.4 Gamow Vectors and Their Association to the Resonance Poles of the
S-Matrix 549
XXI.5 The Golden Rule 563
XXI.6 Partial Decay Rates 567
Problems 569
CHAPTER XXII
Quantal Phase Factors and Their Consequences 571
XXII. 1 Introduction 571
XXII.2 A Quantum Physical System in a Slowly Changing
Environment 573
XXII.3 A Spinning Quantum System in a Slowly Changing External
Magnetic Field—The Adiabatic Approximation 587
XXII.4 A Spinning Quantum System in a Precessing External Magnetic
Field—The General Cyclic Evolution 598
Problems 614
CHAPTER XXIII
A Quantum Physical System in a Quantum Environment—The Gauge
Theory of Molecular Physics 617
XXIII. 1 Introduction 617
XXIII.2 The Hamiltonian of the Diatomic Molecule 618
XXIII.3 The Born-Oppenheimer Method 623
XXIII.4 Gauge Theories 631
XXIII.5 The Gauge Theory of Molecular Physics 636
XXIII.6 The Electronic States of Diatomic Molecules 643
XXIII.7 The Monopole of the Diatomic Molecule 645
Problems 658
Epilogue 661
Bibliography 664
Index 669 |
Côte titre : |
Fs/0233-0234 |
|  |