Titre : |
Physical optics |
Type de document : |
texte imprimé |
Auteurs : |
Akhmanov, SergueA, Auteur ; S. Yu Nikitin, Auteur |
Editeur : |
Oxford : Clarendon Press |
Année de publication : |
1997 |
Autre Editeur : |
Oxford : Oxford university press |
Importance : |
1 vol. (488 p.) |
Présentation : |
ill., fig. |
Format : |
25 cm |
ISBN/ISSN/EAN : |
978-0-19-851795-5 |
Note générale : |
978-0-19-851795-5 |
Langues : |
Anglais (eng) |
Catégories : |
Physique
|
Mots-clés : |
Optique physique |
Index. décimale : |
535.2 - Optique physique (optique cohérente et non linéaire) |
Résumé : |
Fournir une image de l'optique physique moderne comme un expert verrait, cette exposition claire des idées les plus utiles de l'optique sera accessible aux étudiants de premier cycle. Ce manuel couvre à la fois l'optique classique et moderne et est basée sur un cours offert par l'Université de Moscou au cours des dernières années - l'objectif principal était de fournir une présentation complète des fondamentaux du sujet. Contenant une proportion beaucoup plus élevée de matériau d'actualité que les manuels classiques du contenu comprennent la théorie électromagnétique de la lumière, la physique des rayonnements optiques et la physique de l'interaction du rayonnement avec la matière. Parmi les sujets contemporains abordés sont les plus globalement les lasers, l'optique non linéaire, et de nouvelles méthodes de spectroscopie optique. |
Note de contenu : |
Sommaire
PART I THE ELECTROMAGNETIC THEORY OF LIGHT
1 Optical waves in vacuum 3
1.1 The electromagnetic nature of light and Maxwell's theory 3
1.2 Hertz's experiments 5
1.3 Maxwell's equations 6
1.4 The wave equation 7
1.5 A plane wave 8
1.6 A spherical wave 10
1.7 Modulated waves and radiation of real sources of light 11
1.8 Spectral expansion of the optical field 17
1.9 The superposition principle 19
Bibliography 20
2 Polarization of light 21
2.1 The transverse nature of an optical wave 21
2.2 The polarization states of a plane harmonic wave—
elliptical, circular, and linear polarizations 22
2.3 Non-monochromatic light—the natural polarization 30
2.4 Experimental methods of polarization measurement 31
Bibliography 39
3 Light energy 40
3.1 The energy flux carried by an optical wave 40
3.2 Optical beams and pulses: energy, power, and intensity 44
3.3 The spatial and temporal compression of light energy 47
3.4 Basic concepts of photometry 48
Bibliography 52
4 The pressure of light 53
4.1 The momentum of an optical wave 53
4.2 Measurement of the pressure of light and Lebedev's
experiments 56
4.3 The pressure exerted by light on the classical atom 58
4.4 The angular momentum of an optical wave 60
4.5 The photon 62
4.6 Optical cooling 63
Bibliography 64
viii Contents
PART II LIGHT EMISSION AND OPTICAL OSCILLATORS
5 Classical radiation physics 67
5.1 Hertz's experiment 67
5.2 The atom as an elementary source of light 68
5.3 The classical model of the atom 78
5.4 Emission from a charge and emission conditions 69
5.5 Calculation of the vortical component of the field 71
5.6 A rigorous solution of the problem of dipole emission 73
5.7 Harmonic oscillations of a dipole 74
5.8 The total power of dipole radiation 75
5.9 The decay of dipole oscillations due to emission of radiation 76
Bibliography 77
6 Emission from an oscillator ensemble 78
6.1 From the dynamics of an oscillator to the statistics of an
ensemble 78
6.2 Non-laser sources of light: intensity, polarization, and
radiation directivity pattern 78
6.3 Radiation statistics of independent oscillators 81
6.4 The radiation spectrum 84
6.5 Mechanisms of spectral line broadening 85
6.6 Natural broadening 86
6.7 Doppler broadening 87
6.8 Collision-induced broadening and the shift of a spectral
line 89
6.9 Dicke's effect: collision-induced narrowing of a Doppler
spectral line in a dense gas 91
Bibliography 94
7 A linear oscillator in an optical field 95
7.1 Absorption of light by an oscillator and by an oscillator
ensemble 95
7.2 The Bouguer law 98
7.3 Absorption spectroscopy 100
7.4 Decrease in the phase velocity of light propagating in a
medium and the index of refraction 101
7.5 An inhomogeneous ensemble of oscillators 106
7.6 Homogeneous and inhomogeneous widths of spectra 107
7.7 Excitation by a short pulse—energy relaxation and
dephasing 108
7.8 Principles of frequency- and time-domain spectroscopy 109
Bibliography 115
8 A non-linear oscillator in an optical field 116
Contents ix
8.1 A model of a non-linear oscillator 116
8.2 The perturbation method 118
8.3 An oscillator with quadratic non-linearity and optical
second-harmonic generation 118
8.4 An oscillator with cubic non-linearity—the dependence of
the oscillation frequency on amplitude 119
8.5 Oscillation phase variations caused by an external field 121
8.6 Self-action effects of light: self-focusing of optical beams
and self-modulation of pulses 121
8.7 Optical third-harmonic generation 122
8.8 Non-linear resonance and hysteresis—optical bistability 123
8.9 Parametric generation of light and parametric resonance 125
8.10 Raman scattering of light—a model of non-linearly bonded
oscillators 128
8.11 A non-homogeneous ensemble of non-linear oscillators and
"Photon echo" 132
Bibliography 135
9 Thermal radiation 137
9.1 The main experimental facts and methods of
investigation of thermal radiation 137
9.2 Emissivity and absorptivity of physical bodies 138
9.3 Equilibrium thermal radiation 140
9.4 Kirchhoff's law 141
9.5 The spectral density of thermal radiation 143
9.6 The thermodynamics of equilibrium thermal radiation 144
9.7 The Rayleigh-Jeans formula 149
9.8 The "ultraviolet catastrophe" 150
9.9 Planck's formula 151
9.10 The necessity of a quantum-mechanical approach 151
9.11 Thermal radiation laws 154
9.12 Examples 157
Bibliography 158
10 The laser 159
10.1 Quantum properties of atoms and Bohr's postulates 159
10.2 Optical quanta 160
10.3 Spontaneous and stimulated emission in a quantummechanical
system 162
10.4 The operational principle and design of a laser 164
10.5 The characteristics of laser radiation 173
10.6 The generation of ultra-short pulses 174
Bibliograph
PART III INTERFERENCE, DIFFRACTION, AND
COHERENCE
11 The interference of light 183
11.1 Interference phenomena in optics 183
11.2 Young's experiment 184
11.3 The Michelson interferometer 186
11.4 The interference of monochromatic waves 186
11.5 The interference of non-monochromatic light 193
11.6 The interference of a random optical wave 195
11.7 Multiple-beam interference 202
11.8 The Fabry-Perot interferometer 205
11.9 Eigenmodes and the quality factor of a laser resonator 208
Bibliography 210
12 The coherence of light 211
12.1 The temporal coherence of light—coherence time and
coherence length 211
12.2 The spatial coherence of light—the coherence radius 214
12.3 A model of a random optical field 215
12.4 Calculation of the interference pattern obtained with the
Young interferometer 216
12.5 The measurement of coherence and the coherence of
radiation emitted by real sources of light 220
Bibliography 225
13 The diffraction of light 226
13.1 Diffraction as evidence of the wave nature of light—
fundamental experimental facts 226
13.2 Grimaldi's experiment 227
13.3 The Huygens principle 228
13.4 The Huygens-Fresnel principle 229
13.5 Fresnel's diffraction integral 230
13.6 Fresnel zones 232
13.7 Graphical construction of diffraction patterns 235
13.8 Edge diffraction 241
13.9 The diffraction length of an optical beam—near- and farfield
zones of diffraction 247
13.10 The diffraction divergence of an optical beam in the farfield
zone 249
13.11 The focusing of light as a diffraction phenomenon 250
13.12 Kirchhoff's diffraction theory 252
Bibliography
The diffraction of paraxial beams 258
14.1 Presnel's approximation in diffraction theory 258
14.2 Fresnel's integrals and Cornu's spiral 260
14.3 Presnel diffraction by unidimensional structures 261
14.4 Fresnel diffraction by two-dimensional structures 265
14.5 The parabolic equation and quasi-optical approximation 270
14.6 Solution of the parabolic equation 271
14.7 The propagation and diffraction of a Gaussian beam 273
14.8 The focusing of a Gaussian beam 275
14.9 The application criterion for quasi-optical approximation 279
Bibliography 279
15 Diffraction in the far-field zone 280
15.1 The formation of a stable diffraction pattern in the far-field
zone 280
15.2 Fraunhofer diffraction as a spatial Fourier transformation 282
15.3 Fraunhofer diffraction by unidimensional structures—slit
diffraction 284
15.4 Fraunhofer diffraction by two-dimensional structures 286
15.5 Diffraction by a rectangular aperture 288
15.6 Diffraction by a round aperture 289
15.7 Diffraction of a Gaussian beam 292
Bibliography 293
16 Diffraction by periodic structures 294
16.1 Diffraction gratings 294
16.2 The physics of light diffraction by a grating 295
16.3 The equation of a diffraction grating 296
16.4 A mathematical description of diffraction of a plane wave
by a grating 303
16.5 Diffraction by two-dimensional periodic structures 306
16.6 Diffraction by three-dimensional periodic structures—
X-ray diffraction in perfect crystals 310
16.7 X-ray diffraction analysis 313
Bibliography 314
17 The analysis, transformation, and synthesis of optical
fields 315
17.1 The spectral description of the spatial structure of the field 316
17.2 The lens as an element performing Fourier's spatial
transformation 320
17.3 Optical image formation and Abbe's theory 324
17.4 Porter's experiments 325
17.5 The dark-field technique 328
17.6 The phase-contrast technique 329
17.7 The resolving power of a microscope and telescope 331
17.8 Holography: the recording and reconstruction of optical
fields 334
17.9 The diffraction grating and the Fabry-Perot interferometer
as spectroscopic instruments 337
17.10 Fourier spectroscopy 343
17.11 Light-beat spectroscopy 344
Bibliography 346
PART IV LIGHT AND MATTER
18 The physics of the interaction of light with matter 349
18.1 A model of a continuum and Maxwell's equations 349
18.2 The material equations 350
18.3 Classification of media 353
18.4 A plane monochromatic optical wave in a linear
homogeneous isotropic medium 353
18.5 Complex dielectric permittivity, linear optical
susceptibility, and the complex index of refraction 355
18.6 The classical oscillator model of a medium 358
Bibliography 361
19 Optical waves in linear isotropic media 362
19.1 The dispersion and absorption of light in a linear isotropic
medium 362
19.2 The facts confirming Lorentz dispersion theory 367
19.3 Methods of investigation of optical dispersion and
absorption—optical spectroscopy 371
19.4 The propagation of an optical pulse in a dispersive medium 376
Bibliography 385
20 Optical phenomena at a boundary between two media 386
20.1 Reflection and refraction at a separation boundary 386
20.2 Boundary conditions for the electromagnetic field 388
20.3 The geometry of reflection and refraction—Snell's law 388
20.4 Total internal reflection 390
20.5 Energy relations for reflection and refraction—Fresnel's
formulae 392
20.6 The Brewster effect 395
20.7 Variation of the optical wave phase on reflection and
refraction 396
20.8 Reflection of light for normal incidence 397
20.9 The antireflective coating 399
20.10 The reflection of light for oblique incidence 400
20.11 The reflection of light by a metal surface 400
Bibliography
Optics of anisotropic media 403
21.1 Anisotropic materials and the basic effects of crystal optics 403
21.2 The structure of an optical wave in an anisotropic crystal 406
21.3 The matrial equation of an anisotropic medium 408
21.4 Classification of crystals 412
21.5 The polarization eigenstates of an optical wave in an
anisotropic crystal 413
21.6 Ordinary and extradorinary waves 418
21.7 Optical birefringence at the anisotropic medium boundary 423
21.8 The production and analysis of polarized light 427
21.9 The interference of polarized rays 434
21.10 Induced anisotropy 436
Bibliography 438
22 Non-linear optics 439
22.1 Fundamental effects of non-linear optics and the
mechanisms of optical non-linearity 439
22.2 Violation of the superposition principle for intense optical
waves in a medium 443
22.3 The material equation of a non-linear medium 447
22.4 Non-linear polarization 448
22.5 Non-linear susceptibility 449
22.6 An ensemble of non-linear oscillators as a classical model
of a non-linear medium 453
22.7 Optical rectification 459
Bibliography 460
23 Theoretical non-linear optics 461
23.1 Optical second-harmonic generation 461
23.2 Stimulated Raman scattering 471
23.3 Self-focusing of light 479
Bibliography |
Côte titre : |
Fs/12325-12326,Fs/12699,Fs/14106-14107 |
Physical optics [texte imprimé] / Akhmanov, SergueA, Auteur ; S. Yu Nikitin, Auteur . - Oxford : Clarendon Press : Oxford : Oxford university press, 1997 . - 1 vol. (488 p.) : ill., fig. ; 25 cm. ISBN : 978-0-19-851795-5 978-0-19-851795-5 Langues : Anglais ( eng)
Catégories : |
Physique
|
Mots-clés : |
Optique physique |
Index. décimale : |
535.2 - Optique physique (optique cohérente et non linéaire) |
Résumé : |
Fournir une image de l'optique physique moderne comme un expert verrait, cette exposition claire des idées les plus utiles de l'optique sera accessible aux étudiants de premier cycle. Ce manuel couvre à la fois l'optique classique et moderne et est basée sur un cours offert par l'Université de Moscou au cours des dernières années - l'objectif principal était de fournir une présentation complète des fondamentaux du sujet. Contenant une proportion beaucoup plus élevée de matériau d'actualité que les manuels classiques du contenu comprennent la théorie électromagnétique de la lumière, la physique des rayonnements optiques et la physique de l'interaction du rayonnement avec la matière. Parmi les sujets contemporains abordés sont les plus globalement les lasers, l'optique non linéaire, et de nouvelles méthodes de spectroscopie optique. |
Note de contenu : |
Sommaire
PART I THE ELECTROMAGNETIC THEORY OF LIGHT
1 Optical waves in vacuum 3
1.1 The electromagnetic nature of light and Maxwell's theory 3
1.2 Hertz's experiments 5
1.3 Maxwell's equations 6
1.4 The wave equation 7
1.5 A plane wave 8
1.6 A spherical wave 10
1.7 Modulated waves and radiation of real sources of light 11
1.8 Spectral expansion of the optical field 17
1.9 The superposition principle 19
Bibliography 20
2 Polarization of light 21
2.1 The transverse nature of an optical wave 21
2.2 The polarization states of a plane harmonic wave—
elliptical, circular, and linear polarizations 22
2.3 Non-monochromatic light—the natural polarization 30
2.4 Experimental methods of polarization measurement 31
Bibliography 39
3 Light energy 40
3.1 The energy flux carried by an optical wave 40
3.2 Optical beams and pulses: energy, power, and intensity 44
3.3 The spatial and temporal compression of light energy 47
3.4 Basic concepts of photometry 48
Bibliography 52
4 The pressure of light 53
4.1 The momentum of an optical wave 53
4.2 Measurement of the pressure of light and Lebedev's
experiments 56
4.3 The pressure exerted by light on the classical atom 58
4.4 The angular momentum of an optical wave 60
4.5 The photon 62
4.6 Optical cooling 63
Bibliography 64
viii Contents
PART II LIGHT EMISSION AND OPTICAL OSCILLATORS
5 Classical radiation physics 67
5.1 Hertz's experiment 67
5.2 The atom as an elementary source of light 68
5.3 The classical model of the atom 78
5.4 Emission from a charge and emission conditions 69
5.5 Calculation of the vortical component of the field 71
5.6 A rigorous solution of the problem of dipole emission 73
5.7 Harmonic oscillations of a dipole 74
5.8 The total power of dipole radiation 75
5.9 The decay of dipole oscillations due to emission of radiation 76
Bibliography 77
6 Emission from an oscillator ensemble 78
6.1 From the dynamics of an oscillator to the statistics of an
ensemble 78
6.2 Non-laser sources of light: intensity, polarization, and
radiation directivity pattern 78
6.3 Radiation statistics of independent oscillators 81
6.4 The radiation spectrum 84
6.5 Mechanisms of spectral line broadening 85
6.6 Natural broadening 86
6.7 Doppler broadening 87
6.8 Collision-induced broadening and the shift of a spectral
line 89
6.9 Dicke's effect: collision-induced narrowing of a Doppler
spectral line in a dense gas 91
Bibliography 94
7 A linear oscillator in an optical field 95
7.1 Absorption of light by an oscillator and by an oscillator
ensemble 95
7.2 The Bouguer law 98
7.3 Absorption spectroscopy 100
7.4 Decrease in the phase velocity of light propagating in a
medium and the index of refraction 101
7.5 An inhomogeneous ensemble of oscillators 106
7.6 Homogeneous and inhomogeneous widths of spectra 107
7.7 Excitation by a short pulse—energy relaxation and
dephasing 108
7.8 Principles of frequency- and time-domain spectroscopy 109
Bibliography 115
8 A non-linear oscillator in an optical field 116
Contents ix
8.1 A model of a non-linear oscillator 116
8.2 The perturbation method 118
8.3 An oscillator with quadratic non-linearity and optical
second-harmonic generation 118
8.4 An oscillator with cubic non-linearity—the dependence of
the oscillation frequency on amplitude 119
8.5 Oscillation phase variations caused by an external field 121
8.6 Self-action effects of light: self-focusing of optical beams
and self-modulation of pulses 121
8.7 Optical third-harmonic generation 122
8.8 Non-linear resonance and hysteresis—optical bistability 123
8.9 Parametric generation of light and parametric resonance 125
8.10 Raman scattering of light—a model of non-linearly bonded
oscillators 128
8.11 A non-homogeneous ensemble of non-linear oscillators and
"Photon echo" 132
Bibliography 135
9 Thermal radiation 137
9.1 The main experimental facts and methods of
investigation of thermal radiation 137
9.2 Emissivity and absorptivity of physical bodies 138
9.3 Equilibrium thermal radiation 140
9.4 Kirchhoff's law 141
9.5 The spectral density of thermal radiation 143
9.6 The thermodynamics of equilibrium thermal radiation 144
9.7 The Rayleigh-Jeans formula 149
9.8 The "ultraviolet catastrophe" 150
9.9 Planck's formula 151
9.10 The necessity of a quantum-mechanical approach 151
9.11 Thermal radiation laws 154
9.12 Examples 157
Bibliography 158
10 The laser 159
10.1 Quantum properties of atoms and Bohr's postulates 159
10.2 Optical quanta 160
10.3 Spontaneous and stimulated emission in a quantummechanical
system 162
10.4 The operational principle and design of a laser 164
10.5 The characteristics of laser radiation 173
10.6 The generation of ultra-short pulses 174
Bibliograph
PART III INTERFERENCE, DIFFRACTION, AND
COHERENCE
11 The interference of light 183
11.1 Interference phenomena in optics 183
11.2 Young's experiment 184
11.3 The Michelson interferometer 186
11.4 The interference of monochromatic waves 186
11.5 The interference of non-monochromatic light 193
11.6 The interference of a random optical wave 195
11.7 Multiple-beam interference 202
11.8 The Fabry-Perot interferometer 205
11.9 Eigenmodes and the quality factor of a laser resonator 208
Bibliography 210
12 The coherence of light 211
12.1 The temporal coherence of light—coherence time and
coherence length 211
12.2 The spatial coherence of light—the coherence radius 214
12.3 A model of a random optical field 215
12.4 Calculation of the interference pattern obtained with the
Young interferometer 216
12.5 The measurement of coherence and the coherence of
radiation emitted by real sources of light 220
Bibliography 225
13 The diffraction of light 226
13.1 Diffraction as evidence of the wave nature of light—
fundamental experimental facts 226
13.2 Grimaldi's experiment 227
13.3 The Huygens principle 228
13.4 The Huygens-Fresnel principle 229
13.5 Fresnel's diffraction integral 230
13.6 Fresnel zones 232
13.7 Graphical construction of diffraction patterns 235
13.8 Edge diffraction 241
13.9 The diffraction length of an optical beam—near- and farfield
zones of diffraction 247
13.10 The diffraction divergence of an optical beam in the farfield
zone 249
13.11 The focusing of light as a diffraction phenomenon 250
13.12 Kirchhoff's diffraction theory 252
Bibliography
The diffraction of paraxial beams 258
14.1 Presnel's approximation in diffraction theory 258
14.2 Fresnel's integrals and Cornu's spiral 260
14.3 Presnel diffraction by unidimensional structures 261
14.4 Fresnel diffraction by two-dimensional structures 265
14.5 The parabolic equation and quasi-optical approximation 270
14.6 Solution of the parabolic equation 271
14.7 The propagation and diffraction of a Gaussian beam 273
14.8 The focusing of a Gaussian beam 275
14.9 The application criterion for quasi-optical approximation 279
Bibliography 279
15 Diffraction in the far-field zone 280
15.1 The formation of a stable diffraction pattern in the far-field
zone 280
15.2 Fraunhofer diffraction as a spatial Fourier transformation 282
15.3 Fraunhofer diffraction by unidimensional structures—slit
diffraction 284
15.4 Fraunhofer diffraction by two-dimensional structures 286
15.5 Diffraction by a rectangular aperture 288
15.6 Diffraction by a round aperture 289
15.7 Diffraction of a Gaussian beam 292
Bibliography 293
16 Diffraction by periodic structures 294
16.1 Diffraction gratings 294
16.2 The physics of light diffraction by a grating 295
16.3 The equation of a diffraction grating 296
16.4 A mathematical description of diffraction of a plane wave
by a grating 303
16.5 Diffraction by two-dimensional periodic structures 306
16.6 Diffraction by three-dimensional periodic structures—
X-ray diffraction in perfect crystals 310
16.7 X-ray diffraction analysis 313
Bibliography 314
17 The analysis, transformation, and synthesis of optical
fields 315
17.1 The spectral description of the spatial structure of the field 316
17.2 The lens as an element performing Fourier's spatial
transformation 320
17.3 Optical image formation and Abbe's theory 324
17.4 Porter's experiments 325
17.5 The dark-field technique 328
17.6 The phase-contrast technique 329
17.7 The resolving power of a microscope and telescope 331
17.8 Holography: the recording and reconstruction of optical
fields 334
17.9 The diffraction grating and the Fabry-Perot interferometer
as spectroscopic instruments 337
17.10 Fourier spectroscopy 343
17.11 Light-beat spectroscopy 344
Bibliography 346
PART IV LIGHT AND MATTER
18 The physics of the interaction of light with matter 349
18.1 A model of a continuum and Maxwell's equations 349
18.2 The material equations 350
18.3 Classification of media 353
18.4 A plane monochromatic optical wave in a linear
homogeneous isotropic medium 353
18.5 Complex dielectric permittivity, linear optical
susceptibility, and the complex index of refraction 355
18.6 The classical oscillator model of a medium 358
Bibliography 361
19 Optical waves in linear isotropic media 362
19.1 The dispersion and absorption of light in a linear isotropic
medium 362
19.2 The facts confirming Lorentz dispersion theory 367
19.3 Methods of investigation of optical dispersion and
absorption—optical spectroscopy 371
19.4 The propagation of an optical pulse in a dispersive medium 376
Bibliography 385
20 Optical phenomena at a boundary between two media 386
20.1 Reflection and refraction at a separation boundary 386
20.2 Boundary conditions for the electromagnetic field 388
20.3 The geometry of reflection and refraction—Snell's law 388
20.4 Total internal reflection 390
20.5 Energy relations for reflection and refraction—Fresnel's
formulae 392
20.6 The Brewster effect 395
20.7 Variation of the optical wave phase on reflection and
refraction 396
20.8 Reflection of light for normal incidence 397
20.9 The antireflective coating 399
20.10 The reflection of light for oblique incidence 400
20.11 The reflection of light by a metal surface 400
Bibliography
Optics of anisotropic media 403
21.1 Anisotropic materials and the basic effects of crystal optics 403
21.2 The structure of an optical wave in an anisotropic crystal 406
21.3 The matrial equation of an anisotropic medium 408
21.4 Classification of crystals 412
21.5 The polarization eigenstates of an optical wave in an
anisotropic crystal 413
21.6 Ordinary and extradorinary waves 418
21.7 Optical birefringence at the anisotropic medium boundary 423
21.8 The production and analysis of polarized light 427
21.9 The interference of polarized rays 434
21.10 Induced anisotropy 436
Bibliography 438
22 Non-linear optics 439
22.1 Fundamental effects of non-linear optics and the
mechanisms of optical non-linearity 439
22.2 Violation of the superposition principle for intense optical
waves in a medium 443
22.3 The material equation of a non-linear medium 447
22.4 Non-linear polarization 448
22.5 Non-linear susceptibility 449
22.6 An ensemble of non-linear oscillators as a classical model
of a non-linear medium 453
22.7 Optical rectification 459
Bibliography 460
23 Theoretical non-linear optics 461
23.1 Optical second-harmonic generation 461
23.2 Stimulated Raman scattering 471
23.3 Self-focusing of light 479
Bibliography |
Côte titre : |
Fs/12325-12326,Fs/12699,Fs/14106-14107 |
|  |