Titre :
|
Etude de la contrôlabilité d’un serpent hilbertien et application en géométrie sous-riemannienne
|
Auteurs :
|
Rebiha Saffidine ;
N. Bensalem, Directeur de thèse
|
Type de document :
|
document électronique
|
Editeur :
|
Sétif : Université ferhat Abbas faculté des Sciences département des Mathématique, 2016
|
ISBN/ISSN/EAN :
|
E-TH/1315
|
Format :
|
1 vol. (82 f.) / ill.
|
Note générale :
|
Bibliogr.
|
Langues:
|
Français
|
Catégories :
|
Thèses (en français - en anglais) > Document électronique
|
Résumé :
|
Dans cette thèse, on étudie le problème de contrôlabilité d’un bras articulé et d’un serpent dans un espace de Hilbert. Dans le premier chapitre, on généralisé les notions de serpent et du bras articulé en dimension infinie. On étudie également quelques propriété étés de ces derniers . Dans le chapitre 2, on donne une généralisation du théorème accessibilité´e pour le problème de serpent en utilisant les résultats de l’intégrabilité d’une distribution et les orbites des champs de vecteurs sur une variété de Banach. Le troisième chapitre présente notre deuxième contribution. Le but de ce chapitre est de donner une d´démonstration plus simple du problème de contrôlabilité d’un bras articulé et d’un serpent en utilisant l’action du groupe de mobius de la sphère unité sur l’espace des configurations CpL, dans le contexte d’un espace de Hilbert séparable.
|
En ligne :
|
http://dspace.univ-setif.dz:8888/jspui/bitstream/123456789/1626/1/Th%C3%A8se%20de%20SAFFIDINE.pdf
|
Exemplaires (1)
|
E-TH/1315 | Thèse | Bibliothèque centrale | Disponible |
Accueil